• Title/Summary/Keyword: network based system monitoring

Search Result 1,160, Processing Time 0.045 seconds

The Analysis of the APT Prelude by Big Data Analytics (빅데이터 분석을 통한 APT공격 전조 현상 분석)

  • Choi, Chan-young;Park, Dea-woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1129-1135
    • /
    • 2016
  • The NH-NongHyup network and servers were paralyzed in 2011, in the 2013 3.20 cyber attack happened and classified documents of Korea Hydro & Nuclear Power Co. Ltd were leaked on december in 2015. All of them were conducted by a foreign country. These attacks were planned for a long time compared to the script kids attacks and the techniques used were very complex and sophisticated. However, no successful solution has been implemented to defend an APT attacks(Advanced Persistent Threat Attacks) thus far. We will use big data analytics to analyze whether or not APT attacks has occurred. This research is based on the data collected through ISAC monitoring among 3 hierarchical Korean Defense System. First, we will introduce related research about big data analytics and machine learning. Then, we design two big data analytics models to detect an APT attacks. Lastly, we will present an effective response method to address a detected APT attacks.

A Study on Receiver Sensitivity Measurement using Pilot $E_c/I_o$ Compensation Method at CDMA Communication Network (CDMA 기지국에서 Pilot $E_c/I_o$ 보상기법을 이용한 수신감도 측정에 관한 연구)

  • Jeong, Ki-Hyeok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.9-16
    • /
    • 2007
  • Currently, the measurement of RF parameters for a base station in operation is typically limited to easily measured forward path items. In this paper, the forward monitoring ports of base stations are used to measure the reverse RF performance. The system has been implemented and effectiveness has been proven on an operating base station. The receiver sensitivity is measured using an internal CDMA modem which is used to monitor the output power based on closed loop power control when the modem is connected to the base station via a voice call. In order to improve accuracy, in addition to the modem Tx adjust(TxAdj) parameter, the detector's actual measurement is used. For accurate receiver sensitivity, the measurement should be made when there is no traffic which is not possible on an operating base station. Therefore, pilot channel chip energy to received signal power spectral density ratio$(E_c/I_o)$ compensation method is used to offset the receiver sensitivity degradation with voice traffic increase.

Coastal and Marine Environment Monitoring System using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 연안.해양 환경모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Seung-Chul;Kim, Jong-Jin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.180-183
    • /
    • 2011
  • Recently, environmental problems have been deteriorating rapidly. Therefore, there is an urgent need to establish policies and research in the conservation of the global environment. Many researchers are studied in environment systems to prevent and reduce pollution of water, air and soil actively. In this paper, several parameters such as temperature, humidity, illumination, barometric pressure, dew point, water quality data, and air conditions are collected and transmitted thorough wireless sensor network. The field server is located in the coastal and marine area so that any abrupt changes can be detected quickly. In addition, WSN based flooding routing protocol for efficient data transmission is designed to support and monitor information of climate and marin factors.

  • PDF

The Analysis of the APT Prelude by Big Data Analytics (빅데이터 분석을 통한 APT공격 전조 현상 분석)

  • Choi, Chan-young;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.317-320
    • /
    • 2016
  • The NH-NongHyup network and servers were paralyzed in 2011, in the 2013 3.20 cyber attack happened and Classified documents of Korea Hydro & Nuclear Power Co. Ltd were leaked on December in 2015. All of them were conducted by a foreign country. These attacks were planned for a long time compared to the script kids attacks and the techniques used were very complex and sophisticated. However, no successful solution has been implemented to defend an APT attack thus far. Therefore, we will use big data analytics to analyze whether or not APT attack has occurred in order to defend against the manipulative attackers. This research is based on the data collected through ISAC monitoring among 3 hierarchical Korean defense system. First, we will introduce related research about big data analytics and machine learning. Then, we design two big data analytics models to detect an APT attack and evaluate the models' accuracy and other results. Lastly, we will present an effective response method to address a detected APT attack.

  • PDF

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF

A Study on the Accuracy Enhancement Using the Direction Finding Process Improvement of Ground-Based Electronic Warfare System (지상용 전자전장비의 방향 탐지 프로세스 개선을 통한 정확도 향상에 관한 연구)

  • Chin, Huicheol;Kim, Seung-Woo;Choi, Jae-In;Lee, Jae-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.627-635
    • /
    • 2017
  • Modern warfare is gradually changing into a network war, and information electronic warfare is also progressing. In modern war, electronic warfare is all military activity concerned with electromagnetic field use, such as signal collecting, communication monitoring, information analysis, and electronic attack. The one key function of signal collecting for enemy signal analysis, direction finding, collects the signal radiated from enemy area and then calculates the enemy direction. This paper examined the Watson-Watt algorithm for an amplitude direction finding system and CVDF algorithm for phase direction finding system and analyzed the difference in the direction finding accuracy between in the clean electromagnetic field environment and in the real operating field environment of electronic warfare system. In the real field, the direction finding accuracy was affected by the reflected field from the surrounding obstacles. Therefore, this paper proposesan enhanced direction finding process for reducing the effect. The result of direction finding by applying the proposed process was enhanced above $1.24^{\circ}$ compared to the result for the existing process.

Automatic Bee-Counting System with Dual Infrared Sensor based on ICT (ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템)

  • Son, Jae Deok;Lim, Sooho;Kim, Dong-In;Han, Giyoun;Ilyasov, Rustem;Yunusbaev, Ural;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • Honey bees are a vital part of the food chain as the most important pollinators for a broad palette of crops and wild plants. The climate change and colony collapse disorder (CCD) phenomenon make it challenging to develop ICT solutions to predict changes in beehive and alert about potential threats. In this paper, we report the test results of the bee-counting system which stands out against the previous analogues due to its comprehensive components including an improved dual infrared sensor to detect honey bees entering and leaving the hive, environmental sensors that measure ambient and interior, a wireless network with the bluetooth low energy (BLE) to transmit the sensing data in real time to the gateway, and a cloud which accumulate and analyze data. To assess the system accuracy, 3 persons manually counted the outgoing and incoming honey bees using the video record of 360-minute length. The difference between automatic and manual measurements for outgoing and incoming scores were 3.98% and 4.43% respectively. These differences are relatively lower than previous analogues, which inspires a vision that the tested system is a good candidate to use in precise apicultural industry, scientific research and education.

Development of Intelligent Job Classification System based on Job Posting on Job Sites (구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.123-139
    • /
    • 2019
  • The job classification system of major job sites differs from site to site and is different from the job classification system of the 'SQF(Sectoral Qualifications Framework)' proposed by the SW field. Therefore, a new job classification system is needed for SW companies, SW job seekers, and job sites to understand. The purpose of this study is to establish a standard job classification system that reflects market demand by analyzing SQF based on job offer information of major job sites and the NCS(National Competency Standards). For this purpose, the association analysis between occupations of major job sites is conducted and the association rule between SQF and occupation is conducted to derive the association rule between occupations. Using this association rule, we proposed an intelligent job classification system based on data mapping the job classification system of major job sites and SQF and job classification system. First, major job sites are selected to obtain information on the job classification system of the SW market. Then We identify ways to collect job information from each site and collect data through open API. Focusing on the relationship between the data, filtering only the job information posted on each job site at the same time, other job information is deleted. Next, we will map the job classification system between job sites using the association rules derived from the association analysis. We will complete the mapping between these market segments, discuss with the experts, further map the SQF, and finally propose a new job classification system. As a result, more than 30,000 job listings were collected in XML format using open API in 'WORKNET,' 'JOBKOREA,' and 'saramin', which are the main job sites in Korea. After filtering out about 900 job postings simultaneously posted on multiple job sites, 800 association rules were derived by applying the Apriori algorithm, which is a frequent pattern mining. Based on 800 related rules, the job classification system of WORKNET, JOBKOREA, and saramin and the SQF job classification system were mapped and classified into 1st and 4th stages. In the new job taxonomy, the first primary class, IT consulting, computer system, network, and security related job system, consisted of three secondary classifications, five tertiary classifications, and five fourth classifications. The second primary classification, the database and the job system related to system operation, consisted of three secondary classifications, three tertiary classifications, and four fourth classifications. The third primary category, Web Planning, Web Programming, Web Design, and Game, was composed of four secondary classifications, nine tertiary classifications, and two fourth classifications. The last primary classification, job systems related to ICT management, computer and communication engineering technology, consisted of three secondary classifications and six tertiary classifications. In particular, the new job classification system has a relatively flexible stage of classification, unlike other existing classification systems. WORKNET divides jobs into third categories, JOBKOREA divides jobs into second categories, and the subdivided jobs into keywords. saramin divided the job into the second classification, and the subdivided the job into keyword form. The newly proposed standard job classification system accepts some keyword-based jobs, and treats some product names as jobs. In the classification system, not only are jobs suspended in the second classification, but there are also jobs that are subdivided into the fourth classification. This reflected the idea that not all jobs could be broken down into the same steps. We also proposed a combination of rules and experts' opinions from market data collected and conducted associative analysis. Therefore, the newly proposed job classification system can be regarded as a data-based intelligent job classification system that reflects the market demand, unlike the existing job classification system. This study is meaningful in that it suggests a new job classification system that reflects market demand by attempting mapping between occupations based on data through the association analysis between occupations rather than intuition of some experts. However, this study has a limitation in that it cannot fully reflect the market demand that changes over time because the data collection point is temporary. As market demands change over time, including seasonal factors and major corporate public recruitment timings, continuous data monitoring and repeated experiments are needed to achieve more accurate matching. The results of this study can be used to suggest the direction of improvement of SQF in the SW industry in the future, and it is expected to be transferred to other industries with the experience of success in the SW industry.

A Microgravity for Mapping and Monitoring the Subsurface Cavities (지하 공동의 탐지와 모니터링을 위한 고정밀 중력탐사)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek;Koo, Sung-Bon
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.383-392
    • /
    • 2007
  • Karstic features and mining-related cavities not only lead to severe restrictions in land utilizations, but also constitute serious concern about geohazard and groundwater contamination. A microgravity survey was applied for detecting, mapping and monitoring karstic cavities in the test site at Muan prepared by KIGAM. The gravity data were collected using an AutoGrav CG-3 gravimeter at about 800 stations by 5 m interval along paddy paths. The density distribution beneath the profiles was drawn by two dimensional inversion based on the minimum support stabilizing functional, which generated better focused images of density discontinuities. We also imaged three dimensional density distribution by growing body inversion with solution from Euler deconvolution as a priori information. The density image showed that the cavities were dissolved, enlarged and connected into a cavity network system, which was supported by drill hole logs. A time-lapse microgravity was executed on the road in the test site for monitoring the change of the subsurface density distribution before and after grouting. The data were adjusted for reducing the effects due to the different condition of each survey, and inverted to density distributions. They show the change of density structure during the lapsed time, which implies the effects of grouting. This case history at the Muan test site showed that the microgravity with accuracy and precision of ${\mu}Gal$ is an effective and practical tool for detecting, mapping and monitoring the subsurface cavities.