• Title/Summary/Keyword: nerve cells

Search Result 605, Processing Time 0.02 seconds

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

Effect of Ginseng Saponins on the Distribution of Brain Nerve Cells in Carbon Monoxide-intoxicated Mice and Aged Mice (인삼 사포닌이 일산화탄소중독 및 노화과정에서 생쥐의 뇌신경세포 분포에 미치는 영향)

  • Shin, Jeung-Hee;Lee, Ihn-Rhan;Cho, Geum-Hee;Yun, Jae-Soon
    • YAKHAK HOEJI
    • /
    • v.36 no.3
    • /
    • pp.269-277
    • /
    • 1992
  • The effects of ginseng saponins on the distribution of nerve cells in cerebral cortex of carbon monoxide (CO)-intoxicated mice were studied in the young ($5{\sim}8$ weeks) and aged ($43{\sim}52$ weeks) mice. Mice were exposed to 5000 ppm of CO for 40 minutes (72% HbCO). After that, nerve cells in motor(area 4), somatosensory(area 3) and visual(area 17) area of cerebral cortex was observed. In young mice, the number of nerve cells in each area was significantly decreased on 1st, 7th and 14th day after CO intoxication. In aged mice, that was also decreased after CO intoxication. Especially the number of the nerve cells in motor and somatosensory area was significantly decreased on 1st and 7th day, while that in visual area was decreased only on 1st day. The number of nerve cells in young mice pretreated with ginseng saponins were significantly decreased less on 7th and 14th day than that of untreated mice. The number of nerve cells in each area of normal aged mice was larger than that of normal young mice. The results suggest that CO exposure causes local degeneration or disturbance of nerve cells and delayed neurologic sequelae, while ginseng saponins might play a role of protective action on the nerve cells which were damaged by CO.

  • PDF

Effect of Vagus Nerve Stimulation on the Ultrastructure and the Serotonin Content of Enterochromaffin Cells in the Gastrointestinal Tract of Rats (흰쥐에서 미주신경자극이 위장관 장크롬친화성세포의 미세구조와 세로토닌 함량에 미치는 영향)

  • Cho, Byung-Pil;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.1-19
    • /
    • 1995
  • The present study was performed to clarify the effect of vagus nerve stimulation on the enterochromaffin(EC) cells in the body of the stomach, the first part of the duodenum and the ceceum of rats by using routine electron microscopy and immunogold labelling. The changes in the ultrastructure and in the labelling density of the gold particles of the EC cells were investigated after vagus nerve stimulation. The vagus nerve was electrically stimulated with a square wave pulse generator for a duration of 5 minutes each, a total of 8 times at 2 minute intervals. Immunogold labelling demonstrated that the epithelial serotonin immunoreactive cells of the gastrointestinal tract are EC cells containing characteristic pleomorphic granules. Immunocytochemically labelled gold particles were largely concentrated in the dense matrix of the granules of the EC cell, and the labelling density of the gold particles considerably increased after the vagus nerve stimulation. Except for a slight activation of Golgi complexes, no remarkable changes in the ultrastructures of the EC cells were noted after the vagus nerve stimulation. The above results suggest that vagus nerve stimulation may activate serotonin biosynthesis in EC cells.

  • PDF

A potential role of Schwann cells in spinal nerve roots in autoimmune central nervous system diseases

  • Moon, Changjong;Lee, Yongduk;Shin, Taekyun
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.483-486
    • /
    • 2004
  • The expression of nestin and vimentin in the spinal nerve roots of rats with experimental autoimmune encephalomyelitis (EAE) was studied to ascertain whether Schwann cells in the peripheral nerves respond to acute central nervous system autoimmune injury. Immunohistochemistry demonstrated that nestin was constitutively expressed in the dorsal roots of spinal nerves in control rats; its expression was enhanced in the spinal nerve roots of rats with EAE. Vimentin expression was weak in control rat spinal nerve roots, and it was increased in the dorsal roots of rats with EAE. It is postulated that normal animals have multipotent progenitor cells that constitutively express nestin and vimentin in the spinal nerve roots. In response to an injury of the central nervous system, these multipotent Schwann cells are activated in the spinal nerve roots through the expression of the intermediate filament proteins vimentin and nestin.

A Study on the Protective Effects of Siegesbeckiae Herba on Neurotoxicity Induced by N-methyl-D-aspartic acid(NMDA) (희렴(??)이 NMDA로 유발된 신경세포 손상에 미치는 효과)

  • Lee, In;Seong, Nak-Sull;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.20 no.4
    • /
    • pp.121-132
    • /
    • 2005
  • Objectives : Siegesbeckiae Herba's effect on the protection of nerve cells was tested, and the effects were compared between Siegesbeckia glabrescens Makino, the state of which is spica imported from China, and original Korean leaves of it. Methods : After damaging nerve cells by exposing them on NMDA (N-methyl-D-aspartic acid) and KA(kainic acid), Siegesbeckiae Herba's effect on cell death, inhibition rate, glutamate separation, and ROS(reactive oxygen species) production were examined. Results : 1. Siegesbeckiae Herba inhibited the cell death exposed to NMDA. 2. Siegesbeckiae Herba inhibited the amount of glutamate separated from nerve cells exposed to NMDA. 3. Siegesbeckiae Herba inhibited the production of ROS induced by NMDA. 4. Siegesbeckiae Herba did not inhibit the cell death exposed to KA. 5. Chinese Siegesbeckiae Spica had no inhibition effect on cell death. Conclusions : Siegesbeckiae Herba was effective in inhibiting the death of nerve cells exposed to NMDA, and in protecting nerve cells from various damages in nerve cell diseases. Because Chinese Siegesbeckiae Spica did not show such effects, it is necessary to closely examine those effects according to the used parts.

  • PDF

Innervation of Neuroepithelial Bodies in Bronchiolar Epithelium of Human Fetal Lung (인태아 폐의 신경상피소체와 신경종말에 관한 미세구조적 연구)

  • Min, Yong-Il;Yoon, Jae-Rhyong
    • Applied Microscopy
    • /
    • v.25 no.1
    • /
    • pp.48-64
    • /
    • 1995
  • Ultrastructure of nerves and their associated cells in the bronchiolar epithelium of the human fetal lung were studied with ultrastructural and immunohistochemical methods. The neuroendocrine cells were scattered along the basal part of non-ciliated respiratory epithelium and appeared as single cell (solitary neuroendocrine cell) or groups (neuroepithelial bodies). The solitary neuroendocrine cells were devoid of any detectable innervation, while the neuroepithelial bodies were associated with nerve ending containing morphologically afferent (sensory) and efferent (motor) intraepithelial terminals. The afferent nerve endings contained abundant mitochondria with long cristae. The efferent nerve endings were characterized by the presence of synaptic vesicles. Both types of nerve endings formed synaptic junction between nerve endings and neuroepithelial bodies cells. Serial sections of the intraepithelial nerves revealed that both morphologically afferent and efferent types of nerve endings may be formed by the same nerve fiber. By immunohistochemistry, bombesin and serotonin were localized in solitary neuroendocrine cells and neuroepithelial bodies of human fetal lung from various prenatal age groups. These results suggest that the neuroepithelial bodies cells of the human fetal lung have neuroreceptor function.

  • PDF

Effects of YideungJetong-Tang on Peripheral Neuropathy Induced by Taxol and Compression Injury in the Rat Sciatic Nerve (이등제통탕(二藤除痛湯)이 Taxol 처리 및 좌골신경의 압박 손상 후 유발된 랫드의 말초신경병증에 미치는 영향)

  • Jeong, Ho Young;Kim, Chul Jung;Cho, Chung Sik
    • The Journal of Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.133-146
    • /
    • 2012
  • Background: Most antitumor agents have the side effect of chemotherapy-induced peripheral neuropathy (CIPN). Cancer patients who take antitumor agents suffer from CIPN, but there is no known treatment for it. Unlike the central nerve system, the peripheral nerve can self-repair, and the Schwann cell takes this mechanism. Objectives: In this study, we researched the effect of YideungJetong-Tang (YJT) extract on taxol-induced sciatic nerve damage, through in vitro and in vivo experiments. Also, we studied the effect of YJT extract on neurite recovery and anti-inflammatory effect after compression injury of sciatic nerve in vivo. Methods: Vehicle, taxol and taxol+YJT were respectively applied on sciatic nerve cells of rat in vitro, then the cells were cultured. The sciatic nerve cells and Schwann cells were then observed using Neurofilament 200, Hoechst, ${\beta}$ -tubulin, S-$100{\beta}$, caspase-3 and phospho-Erk1/2. CIPN was induced by taxol into the sciatic nerve of rat in vivo, then YJT extract was taken orally. The axons, Schwann cells and neurites of the DRG sensory nerve were then observed using Neurofilament 200, ${\beta}$-tubulin, Hoechst, S-$100{\beta}$, phospho-Erk1/2 and caspase-3. YJT was taken orally after sciatic nerve compression injury, and the changes in axon of the sciatic nerve, Schwann cells and TNF-${\alpha}$ concentration were observed. Results: The taxol and YJT treated group showed significant effects on Schwann cell recovery, neurite growth and recovery. In vivo, YJT compared with control group showed Schwann cell structural improvement and axons recovering effect after taxol-induced Schwann cell damage. After sciatic nerve compression injury, recovery of distal axon, changes of Schwann cell distribution, and anti-inflammatory response were observed in the YJT. Conclusions: Through this study, we found that after taxol-induced neurite damage of sciatic nerve in vivo and in vitro, YJT had significant effects on sciatic nerve growth and Schwann cell structural improvement. In vivo, YJT improved recovery of distal axons and Schwann cells and had an anti-inflammatory effect.

Immunohistochemical Studies on the Visceral Ganglion and Right Parietal Ganglion of the African Giant Snail, Achatina fulica (아프리카왕달팽이(Achatina fulica) 내장신경절 및 우체벽신경절에 관한 연구 I. 면역조직화학적 방법)

  • 장남섭;김상원;한종민;이광주;황선종
    • The Korean Journal of Malacology
    • /
    • v.16 no.1_2
    • /
    • pp.1-9
    • /
    • 2000
  • The visceral ganglion and the right parietal ganglion of the African giant snail, Achatina fulica, consists of two hemispheres, each in left and right side, respectively, like a butterfly. The surface of cortex and medulla in the two ganglions are crowded with nerve cells, but nerve fibers form a network at the middle portion. The nerve cells in the cortex and medulla of the visceral ganglion and the right parietal ganglion are classified into the following four classes according to their sizes: giant (above 200 ${\mu}{\textrm}{m}$, in diameter), large (60-70 ${\mu}{\textrm}{m}$, in diameter), middle (30-40 ${\mu}{\textrm}{m}$, in diameter) and small (10-15 ${\mu}{\textrm}{m}$, in diameter) nerve cells, respectively. The giant and large nerve cells are rarely found(20-22 eas. in total) while the middle and small nerve cells are found in large quantities (middle: 400-500 eas., small: 700-800 eas.). In the AB/AY double staining, the giant nerve cell is identified as light yellow cells (LYC), while large and middle none cells as dark green cells (DGC) or yellow green cells (YGC), and small nerve cells as yellow cells (YC) or blue cells (BC), The DGC, which reacts positively to somatostatin immunostain reaction, inhibits the secretion of the growth control hormone. The giant and large nerve cells are identified to do the functions of phagocytosis as well as neurosecretion.

  • PDF

EFFECT OF NERVE GROWTH FACTOR GENE INJECTION ON THE NERVE REGENERATION IN RAT LINGUAL NERVE CRUSH-INJURY MODEL (백서 설신경 압박손상모델에서 신경성장인자 유전자 주입이 신경재생에 미치는 영향)

  • Gao, En-Feng;Chung, Hun-Jong;Ahn, Kang-Min;Kim, Soung-Min;Kim, Yun-Hee;Jahng, Jeong-Won;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.375-395
    • /
    • 2006
  • Purpose: Lingual nerve (LN) damage may be caused by either tumor resection or injury such as wisdom tooth extraction, Although autologous nerve graft is sometimes used to repair the damaged nerve, it has the disadvantage of necessity of another operation for nerve harvesting. Moreover, the results of nerve grafting is not satisfactory. The nerve growth factor (NGF) is well-known to play a critical role in peripheral nerve regeneration and its local delivery to the injured nerve has been continuously tried to enhance nerve regeneration. However, its application has limitations like repeated administration due to short half life of 30 minutes and an in vivo delivery model must allow for direct and local delivery. The aim of this study was to construct a well-functioning $rhNGF-{\beta}$ adenovirus for the ultimate development of improved method to promote peripheral nerve regeneration with enhanced and extended secretion of hNGF from the injured nerve by injecting $rhNGF-{\beta}$ gene directly into crush-injured LN in rat model. Materials and Methods: $hNGF-{\beta}$ gene was prepared from fetal brain cDNA library and cloned into E1/E3 deleted adenoviral vector which contains green fluorescence protein (GFP) gene as a reporter. After large scale production and purification of $rhNGF-{\beta}$ adenovirus, transfection efficiency and its expression at various cells (primary cultured Schwann cells, HEK293 cells, Schwann cell lines, NIH3T3 and CRH cells) were evaluated by fluorescent microscopy, RT-PCR, ELISA, immunocytochemistry. Furthermore, the function of rhNGF-beta, which was secreted from various cells infected with $rhNGF-{\beta}$ adenovirus, was evaluated using neuritogenesis of PC-12 cells. For in vivo evaluation of efficacy of $rhNGF-{\beta}$ adenovirus, the LNs of 8-week old rats were exposed and crush-injured with a small hemostat for 10 seconds. After the injury, $rhNGF-{\beta}$ adenovirus($2{\mu}l,\;1.5{\times}10^{11}pfu$) or saline was administered into the crushed site in the experimental (n=24) and the control group (n=24), respectively. Sham operation of another group of rats (n=9) was performed without administration of either saline or adenovirus. The taste recovery and the change of fungiform papilla were studied at 1, 2, 3 and 4 weeks. Each of the 6 animals was tested with different solutions (0.1M NaCl, 0.1M sucrose, 0.01M QHCl, or 0.01M HCl) by two-bottle test paradigm and the number of papilla was counted using SEM picture of tongue dorsum. LN was explored at the same interval as taste study and evaluated electro-physiologically (peak voltage and nerve conduction velocity) and histomorphometrically (axon count, myelin thickness). Results: The recombinant adenovirus vector carrying $rhNGF-{\beta}$ was constructed and confirmed by restriction endonuclease analysis and DNA sequence analysis. GFP expression was observed in 90% of $rhNGF-{\beta}$ adenovirus infected cells compared with uninfected cells. Total mRNA isolated from $rhNGF-{\beta}$ adenovirus infected cells showed strong RT-PCR band, however uninfected or LacZ recombinant adenovirus infected cells did not. NGF quantification by ELISA showed a maximal release of $18865.4{\pm}310.9pg/ml$ NGF at the 4th day and stably continued till 14 days by $rhNGF-{\beta}$ adenovirus infected Schwann cells. PC-12 cells exposed to media with $rhNGF-{\beta}$ adenovirus infected Schwann cell revealed at the same level of neurite-extension as the commercial NGF did. $rhNGF-{\beta}$ adenovirus injected experimental groups in comparison to the control group exhibited different taste preference ratio. Salty, sweet and sour taste preference ratio were significantly different after 2 weeks from the beginning of the experiment, which were similar to the sham group, but not to the control group.

Differentiation and Distrbution of the Choline Acetyltransferase-immunoreactive Nerve Cells in the Magnocellular Preoptic Nucleus of the Rat Forebrains during the Postnatal Development

  • Chung, Young-Wha;Choi, Yoon-Jin
    • Animal cells and systems
    • /
    • v.1 no.3
    • /
    • pp.483-489
    • /
    • 1997
  • This study was performed to investigate the differentiation and distribution of choline acetyltransferase (ChAT}-immunoreactive cells in the magnacellular preoptic nucleus (MCPO) of the postnatal and adult rat forebrains, utilizing techniques of immunocytochemistry. According to the cell shape and the ratio of long axis versus short axis of cell soma, the ChATimmunoreactive nerve cells in the MCPO were classified into six types: 1) round, 2) oval, 3) elongated, 4) fusiform, 5) triangular, and 6) polygonal types. Frequency distributions of the oval and round nerve cells on the postnatal day (PND) 0 were observed to be high. But in the adult, frequency distributions of the same cells were shown to decrease. Compared to those of the postnatal rats, frequency distributions of elongated, fusiform, triangular, and polygonal nerve cells in the adult were increased. The total mean volumes of ChAT-immunoreactive cell somata in the MCPO of PND 0 rat were the lowest, while those in the PND 17 rat were shown to be the highest and decreased in the adult. The soma volumes of the immunoreactive cells at the PND 17 were evenly distributed, but those in the other developmental stages (e.g. PND 7 and adult) appeared to exhibit unimodal distributions. On the electron micrography, the free ribosomes, polysomes, and rough endoplasmic reticula (RER) of the nerve cells in the MCPO of PND 21 rat forebrains were immunoreactive to ChAT in the tissues untreated with triton X-100. According to the observations in the present study, it is considered that the ChAT-immunoreactive nerve cells in the MCPO of the rat forebrains are differentiated throughout the following processes during the postnatal development: 1) increase in cell soma volumes, 2) development of neurites, 3) increase in the frequency of differentiated cell types, and 4) decrease in cell soma volumes. The ribosomes, polysomes, and RER are considered to be closely related to the intracellular localization and biosynthesis of the ChAT but not Golgi complex.

  • PDF