• 제목/요약/키워드: negative scalar curvature

검색결과 15건 처리시간 0.027초

A NOTE ON DECREASING SCALAR CURVATURE FROM FLAT METRICS

  • Kim, Jongsu
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.647-655
    • /
    • 2013
  • We obtain $C^{\infty}$-continuous paths of explicit Riemannian metrics $g_t$, $0{\leq}t$ < ${\varepsilon}$, whose scalar curvatures $s(g_t)$ decrease, where $g_0$ is a flat metric, i.e. a metric with vanishing curvature. Most of them can exist on tori of dimension ${\geq}3$. Some of them yield scalar curvature decrease on a ball in the Euclidean space.

DEFORMATION OF CARTAN CURVATURE ON FINSLER MANIFOLDS

  • Bidabad, Behroz;Shahi, Alireza;Ahmadi, Mohamad Yar
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2119-2139
    • /
    • 2017
  • Here, certain Ricci flow for Finsler n-manifolds is considered and deformation of Cartan hh-curvature, as well as Ricci tensor and scalar curvature, are derived for spaces of scalar flag curvature. As an application, it is shown that on a family of Finsler manifolds of constant flag curvature, the scalar curvature satisfies the so-called heat-type equation. Hence on a compact Finsler manifold of constant flag curvature of initial non-negative scalar curvature, the scalar curvature remains non-negative by Ricci flow and blows up in a short time.

A NOTE ON SCALAR CURVATURE FUNCTIONS OF ALMOST-KÄHLER METRICS

  • Kim, Jongsu
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권3호
    • /
    • pp.199-206
    • /
    • 2013
  • We present a 4-dimensional nil-manifold as the first example of a closed non-K$\ddot{a}$hlerian symplectic manifold with the following property: a function is the scalar curvature of some almost K$\ddot{a}$hler metric iff it is negative somewhere. This is motivated by the Kazdan-Warner's work on classifying smooth closed manifolds according to the possible scalar curvature functions.

CONSTANT NEGATIVE SCALAR CURVATURE ON OPEN MANIFOLDS

  • Kim, Seong-Tag
    • 대한수학회보
    • /
    • 제35권2호
    • /
    • pp.195-201
    • /
    • 1998
  • We let (M,g) be a noncompact complete Riemannian manifold of dimension n $\geq$ 3 with scalar curvatue S, which is close to -1. We show the existence of a conformal metric $\bar{g}$, near to g, whose scalar curvature $\bar{S}$ = -1 by gluing solutions of the corresponding partial differential equation on each bounded subsets $K_i$ with ${\bigcup}K_i$ = M.

  • PDF

THE STRUCTURE OF THE REGULAR LEVEL SETS

  • Hwang, Seung-Su
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1245-1252
    • /
    • 2011
  • Consider the $L^2$-adjoint $s_g^{'*}$ of the linearization of the scalar curvature $s_g$. If ker $s_g^{'*}{\neq}0$ on an n-dimensional compact manifold, it is well known that the scalar curvature $s_g$ is a non-negative constant. In this paper, we study the structure of the level set ${\varphi}^{-1}$(0) and find the behavior of Ricci tensor when ker $s_g^{'*}{\neq}0$ with $s_g$ > 0. Also for a nontrivial solution (g, f) of $z=s_g^{'*}(f)$ on an n-dimensional compact manifold, we analyze the structure of the regular level set $f^{-1}$(-1). These results give a good understanding of the given manifolds.

Some Triviality Characterizations on Gradient Almost Yamabe Solitons

  • Uday Chand De;Puja Sarkar;Mampi Howlader
    • Kyungpook Mathematical Journal
    • /
    • 제63권4호
    • /
    • pp.639-645
    • /
    • 2023
  • An almost Yamabe soliton is a generalization of the Yamabe soliton. In this article, we deduce some results regarding almost gradient Yamabe solitons. More specifically, we show that a compact almost gradient Yamabe soliton having non-negative Ricci curvature is trivial. Again, we prove that an almost gradient Yamabe soliton with a non-negative potential function and scalar curvature bound admitting an integral condition is trivial. Moreover, we give a characterization of a compact almost gradient Yamabe solitons.

MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE

  • Kim, Jongsu
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1087-1098
    • /
    • 2013
  • We find a $C^{\infty}$-continuous path of Riemannian metrics $g_t$ on $\mathbb{R}^k$, $k{\geq}3$, for $0{\leq}t{\leq}{\varepsilon}$ for some number ${\varepsilon}$ > 0 with the following property: $g_0$ is the Euclidean metric on $\mathbb{R}^k$, the scalar curvatures of $g_t$ are strictly decreasing in $t$ in the open unit ball and $g_t$ is isometric to the Euclidean metric in the complement of the ball. Furthermore we extend the discussion to the Fubini-Study metric in a similar way.

MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE IN 3 DIMENSION

  • Kang, Yu-Tae;Kim, Jong-Su;Kwak, Se-Ho
    • 대한수학회보
    • /
    • 제49권3호
    • /
    • pp.581-588
    • /
    • 2012
  • We find a $C^{\infty}$ one-parameter family of Riemannian metrics $g_t$ on $\mathbb{R}^3$ for $0{\leq}t{\leq}{\varepsilon}$ for some number ${\varepsilon}$ with the following property: $g_0$ is the Euclidean metric on $\mathbb{R}^3$, the scalar curvatures of $g_t$ are strictly decreasing in t in the open unit ball and $g_t$ is isometric to the Euclidean metric in the complement of the ball.