Acknowledgement
Supported by : Chung-Ang University
References
-
S. Agmon, The
$L_p$ approach to the Dirichlet Problem, Ann. Scuola Norm. Sup. Pisa 13 (1959), 405-448. - M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969), 379-392. https://doi.org/10.4310/jdg/1214429060
- A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
- L. Bessieres, J. Lafontiane, and L. Rozoy, Scalar curvature and black holes, preprint.
- J. P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1-41.
- A. E. Fischer and J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484. https://doi.org/10.1090/S0002-9904-1974-13457-9
- J. Hempel, 3-manifolds, Princeton, 1976.
- S. Hwang, Critical points of the total scalar curvature functional on the space of metrics of constant scalar curvature, Manuscripta Math. 103 (2000), no. 2, 135-142. https://doi.org/10.1007/PL00005857
- S. Hwang, J. Chang, and G. Yun, Rigidity of the critical point equation, Math. Nachr. 283 (2010), no. 6, 846-853. https://doi.org/10.1002/mana.200710037
- O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 (1982), no. 4, 665-675. https://doi.org/10.2969/jmsj/03440665
- J. Lafontaine, Sur la geometrie d'une generalisation de l'equation differentielle d'Obata, J. Math. Pures Appl. (9) 62 (1983), no. 1, 63-72.
- J. Lafontaine and L. Rozoy, Courure scalaire et trous noirs, Seminaire de Theorie Spectrale et Geometrie, Vol. 18, Annee 1999-2000, 69-76, Semin. Theor. Spectr. Geom., 18, Univ. Grenoble I, Saint-Martin-d'Heres, 2000.
- Y. Shen, A note on Fisher-Marsden's conjecture, Proc. Amer. Math. Soc. 125 (1997), no. 3, 901-905. https://doi.org/10.1090/S0002-9939-97-03635-6