• 제목/요약/키워드: necrotic cell death

검색결과 75건 처리시간 0.02초

Quercetin Prevents Hydrogen Peroxide-induced Necrotic and Apoptotic Cell Death in Human Colonic Epithelial Cells

  • Jung, Soon-Hee
    • 대한임상검사과학회지
    • /
    • 제43권4호
    • /
    • pp.161-170
    • /
    • 2011
  • Quercetin is one of the most distributed flavonoids in the plant kingdom and occurs naturally in a wide range of fruits and vegetables. This study was undertaken to determine whether quercetin exerts beneficial effect against necrotic and apoptotic cell death induced by hydrogen peroxide ($H_2O2$) in intestinal cells using the human-derived cultured T84 colonic epithelial cell line. Necrotic cell death was induced by exposing cells to 0.5 mM $H_2O_2$ for 2 h and apoptosis was induced by incubating cells in normal culture medium for 18 h following exposure of cells to 0.5 mM $H_2O2$ for 2 h. Cell viability was evaluated by the trypan blue exclusion assay and apoptosis was assessed by Hoechst 33258 staining and flow cytometry. $H_2O_2$ induced necrotic cell death in a time and dose-dependent fashion. Both necrotic and apoptotic cell deaths were not prevented by the antioxidants N,N'-diphenyl-p-phenylenediamine(DPPD) and Trolox, whereas both cell deaths induced by the organic hydroperoxide t-butylhydroperoxide (tBHP) were prevented by DPPD, suggesting that $H_2O_2$ induces cell death through a lipid peroxidation-independent mechanism. $H_2O2$-induced necrotic death was prevented by deferoxamine and 3-aminobenzamide, while the apoptotic cell death was not affected by these agents. Quercetin prevented both necrotic and apoptotic cell deaths induced by $H_2O_2$ in a dose-dependent manner. $H_2O_2$ caused activation of poly (ADP-ribose) polmerase (PARP), which was inhibited by deferoxamine, 3-aminobenzamide, and quercetin, but not DPPD. These results indicate that quercetin inhibits both necroticand apoptotic deaths of T84 cells. The anti-necrotic effect of quercetin may be attributed to its iron chelator activity rather than a direct $H_2O_2$ scavenging capacity and antioxidant. The present study suggests that quercetin may play a therapeutic role in the treatment of human gastrointestinal diseases mediated by oxidants.

  • PDF

Role of apoptotic and necrotic cell death under physiologic conditions

  • Han, Song-Iy;Kim, Yong-Seok;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • 제41권1호
    • /
    • pp.1-10
    • /
    • 2008
  • Surgery, Chung-Ang Unviersity College of Medicine, Yong-San Hospital, Seoul, Korea Apoptosis is considered to be a programmed and controlled mode of cell death, whereas necrosis has long been described as uncontrolled and accidental cell death resulting from extremely harsh conditions. In the following review, we will discuss the features and physiological meanings as well as recent advances in the elucidation of the signaling pathways of both apoptotic cell death and programmed necrotic cell death.

Ultrastructural Changes During Programmed Cell Death of Tobacco Leaf Tissues Infected with Tobacco mosaic virus

  • Shin, Jun-Seong;Kim, Young-Ho;Chae, Soon-Yong
    • The Plant Pathology Journal
    • /
    • 제17권6호
    • /
    • pp.315-324
    • /
    • 2001
  • Tobacco (Nicotiana tabacum cvs.Xanthi-nc and NC 82) plants infected with Tobacco mosaic virus (TMV) were examined ultrastructurally. Local lesions produced by TMV were sunken and withered. The plants were subjected to temperature shift (TS), a method to produce programmed cell death (PCD), by placing the infected plants initially at high temperature (35$^{\circ}C$) for 2 days and then shifting them to greenhouse temperature (22-27$^{\circ}C$). As a result, expanded lesions around the original necrotic lesions were produced. The expanded area initially had no symptoms, but it withered and became necrotic 15 h after TS. No ultrastructural changes related to PCD were noted at 0 h after TS in Xanthi-nc tobacco tissues as well as in healthy and susceptible tobacco tissues infected with TMV, At 6 h after TS, chloroplasts were convoluted and cytoplasm began to be depleted; however no necrotic cells were found. At 17 h after TS, ground cytoplasm of affected cells was completely depleted and chloroplasts were stacked together with bent cell wall or dispersed in the intracellular space. Necrotic cells were also observed, containing virus particles in the necrotic cytoplasm. There were initially two types of symptoms in the expanded lesions: chlorosis and non-chlorosis (green). Abundant TMV particles and X-bodies were only found in the chlorotic tissue areas. These results suggest that PCD by TMV infection may start with the wilting of cells and tissues before necrotic lesion formation.

  • PDF

2-Chloroethylethyl Sulfide Induces Apoptosis and Necrosis in Thymocytes

  • Hur, Gyeung-Haeng;Kim, Yun-Bae;Shin, Sung-Ho
    • BMB Reports
    • /
    • 제31권2호
    • /
    • pp.183-188
    • /
    • 1998
  • 2-chloroethylethyl sulfide (CEES) is an alkylating agent that readily reacts with a wide variety of biological molecules causing metabolic abnormality. The mechanism of cell death during CEES injury is poorly understood. We have examined the effect of exposure of thymocytes with various concentrations of CEES to determine the pattern of cell death in thymocytes injury induced by CEES. In the present study, we show that two patterns of cell death occurred by either one of two mechanisms: apoptosis and necrosis. Exposure to low level of CEES (100 ${\mu}M$) for 5 h caused an induction of apoptosis on thymocytes, as identified by the following criteria: DNA fragmentation visualized by the characteristic "ladder" pattern was observed upon agarose gel electrophoresis and morphological features were revealed by microscopical observations. In contrast, exposure to high levels of CEES (500 ${\mu}M$) induce necrotic features such as cell lysis. Thus, depending on the concentrations, CEES can result in either apoptotic or necrotic cell damage. Our findings suggest that thymocytes which are not killed directly, but merely injured by low levels of CEES, are able to activate an internally-programmed cell death mechanism, whereas thymocytes receiving severe damages apparently can not.

  • PDF

Apoptosis Induction by Menadione in Human Promyelocytic Leukemia HL-60 Cells

  • Sa, Duck-Jin;Lee, Eun-Jee;Yoo, Byung-Sun
    • Toxicological Research
    • /
    • 제25권3호
    • /
    • pp.113-118
    • /
    • 2009
  • Cell death induced by menadione (vitamin K-3,2-methyl-1,4-naphthoquinone) has been investigated in human promyelocytic leukemia HL-60 cells. Menadione was found to induce both apoptosis and necrosis in HL-60 cells. Low concentration ($1{\sim}$50 ${\mu}$M) of menadione induced apoptotic cell death, which was demonstrated by typical DNA ladder patterns on agarose gel electrophoresis and flow cytometry analysis. In contrast, a high concentration of menadione (100 ${\mu}$M) induced necrotic cell death, which was demonstrated by DNA smear pattern in agarose gel electrophoresis. Necrotic cell death was accompanied with a great reduction of cell viability. Menadione activated caspase-3, as evidenced by both increased protease activity and proteolytic cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) into 85 kDa cleavage product. Caspase-3 activity was maximum at 50 ${\mu}$M of menadione, and very low at 100 ${\mu}$M of menadione. Taken together, our results showed that menadione induced mixed types of cell death, apoptosis at low concentrations and necrosis at high concentrations in HL-60 cells.

Mitochondrial Targeting Domain Homologs Induce Necrotic Cell Death Via Mitochondrial and Endoplasmic Reticulum Disruption

  • Park, Junghee;Han, Ji-Hye;Myung, Seung-Hyun;Chung, Hea-jong;Park, Jae-il;Cho, Ju-Yeon;Kim, Tae-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.875-881
    • /
    • 2021
  • The mitochondrial targeting domain (MTD) of Noxa contributes to its mitochondrial localization and to apoptosis induction. As a peptide, MTD fused with octa-arginine (R8), a CPP, induces necrosis related to intracellular calcium influx and destruction of mitochondria and endoplasmic reticulum. We searched for homologs of MTD, and compared their cell killing capability when fused with R8. Three of the seven peptides triggered cell death with similar mechanisms. The comparative analysis of peptide sequences showed that four amino acid sites of MTD are critical in regulating necrosis, suggesting the potential to generate artificial, adjustable cytotoxic peptides, which could be effective medicines for many diseases. Thus, homologs functionality could hint to the functions of their belonging proteins.

The serine threonine kinase RIP3: lost and found

  • Morgan, Michael J.;Kim, You-Sun
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.303-312
    • /
    • 2015
  • Receptor-interacting protein kinase-3 (RIP3, or RIPK3) is an essential protein in the "programmed", or "regulated" necrosis cell death pathway that is activated in response to death receptor ligands and other types of cellular stress. Programmed necrotic cell death is distinguished from its apoptotic counterpart in that it is not characterized by the activation of caspases; unlike apoptosis, programmed necrosis results in plasma membrane rupture, thus spilling the contents of the cell and triggering the activation of the immune system and inflammation. Here we discuss findings, including our own recent data, which show that RIP3 protein expression is absent in many cancer cell lines. The recent data suggests that the lack of RIP3 expression in a majority of these deficient cell lines is due to methylation-dependent silencing, which limits the responses of these cells to pro-necrotic stimuli. Importantly, RIP3 expression may be restored in many cancer cells through the use of hypomethylating agents, such as decitabine. The potential implications of loss of RIP3 expression in cancer are explored, along with possible consequences for chemotherapeutic response. [BMB Reports 2015; 48(6): 303-312]

Shikonin Induced Necroptosis via Reactive Oxygen Species in the T-47D Breast Cancer Cell Line

  • Shahsavari, Zahra;Karami-Tehrani, Fatemeh;Salami, Siamak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7261-7266
    • /
    • 2015
  • Breast cancer, the most common cancer in the women, is the leading cause of death. Necrotic signaling pathways will enable targeted therapeutic agents to eliminate apoptosis-resistant cancer cells. In the present study, the effect of shikonin on the induction of cell necroptosis or apoptosis was evaluated using the T-47D breast cancer cell line. The cell death modes, caspase-3 and 8 activities and the levels of reactive oxygen species (ROS) were assessed. Cell death mainly occurred through necroptosis. In the presence of Nec-1, caspase-3 mediated apoptosis was apparent in the shikonin treated cells. Shikonin stimulates ROS generation in the mitochondria of T-47D cells, which causes necroptosis or apoptosis. Induction of necroptosis, as a backup-programmed cell death pathway via ROS stimulation, offers a new strategy for the treatment of breast cancer.

Harnessing of Programmed Necrosis for Fighting against Cancers

  • Cho, Young Sik;Park, Seung Yeon
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.167-175
    • /
    • 2014
  • Chemotherapy has long been considered as one of useful strategies for cancer treatment. It is primarily based on the apoptosis that can selectively kill cancer cells. However, cancer cells can progressively develop an acquired resistance to apoptotic cell death, rendering refractory to chemo- and radiotherapies. Although the mechanism by which cells attained resistance to drug remains to be clarified, it might be caused by either pumping out of them or interfering with apoptotic signal cascades in response to cancer drugs. In case that cancer cells are defective in some part of apoptotic machinery by repeated exposure to anticancer drugs, alternative cell death mechanistically distinct from apoptosis could be adopted to remove cancer cells refractory to apoptosis-inducing agents. This review will mainly deal with harnessing of necrotic cell death, specifically, programmed necrosis and practical uses. Here, we begin with various defects of apoptotic death machinery in cancer cells, and then provide new perspective on programmed necrosis as an alternative anticancer approach.

TALP-32의 인체자궁암 세포주 HeLa에 대한 세포독성 (Cytocidal Effect of TALP-32 on Human Cervical Cancer Cell HeLa)

  • 박지훈;김종석;윤은진;송경섭;서강식;김훈;정연주;윤완희;임규;황병두;박종일
    • Toxicological Research
    • /
    • 제22권4호
    • /
    • pp.315-322
    • /
    • 2006
  • TALP-32 is highly basic protein with a molecular weight of 32 kDa purified from human term placenta. Some basic proteins such as defensins and cecropins are known to induce cell death by increasing membrane permeability and some of them are under development as an anticancer drug especially targeting multi-drug resistant cancers. Therefore, we investigated cytotoxic effect and mechanism of TALP-32 When HeLa cell was incubated with TALP-32, cytotoxicity was increased in time and dose dependent manner. As time goes by, HeLa cells became round and plasma membrane was ruptured. Increase of plasma membrane permeability was determined with LDH release assay. Also in transmission electron microscopy, typical morphology of necrotic cell death, such as cell swelling and intracellular organelle disruption was observed, but DNA fragmentation and caspase activation was not. And necrotic cell death was determined with Annexin V/Pl staining. The cytotoxicity of TALP-32 was minimal and decreased or RBC and Hep3B respectively. These data suggests that TALP-32 induces necrosis on rapidly growing cells but not on slowly growing cells implicating the possibility of its development of anticancer peptide drug.