• Title/Summary/Keyword: nearshore

Search Result 194, Processing Time 0.024 seconds

The Change of Nearshore Processes due to the Development of Coastal Zone (연안역 개발에 따른 해안과정의 변화)

  • Lee, J.W.;Lee, S.J.;Lee, H.;Jeong, D.D.
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.155-166
    • /
    • 1999
  • The construction of the coastal structures and reclamation work causes the circulation reduced in the semi-closed inner water area and the unbalanced sediment budget of beach results in an alteration of beach topography. Among the various fluid motions in the nearshore zone water particle motion due to wave and wave-induced currents are the most responsible for sediment movement. Therefore it is needed to predict the effect of the environmental change because of development and so the prediction of wave transformation dose. The purpose of this study is to introduce the relation between waves wave-induced currents and sediment movement. In this study we will show numerical method using energy conservation equation involving reflection diffraction and reflection and the surfzone energy dissipation term due to wave breaking is included in the basic equation. For the wave-induced current the momentum equation was combined with radiation stresses lateral mixing and friction Various information is required in the prediction of wave-induced current depending on the prediction tool. We can predict changes in wave-induced current from the distribution of wave especially near the wave breaking zone. To evaluate these quantities we have to know the local condition of waves mean sea level and so on. The results from the wave field and wave-induced current field deformation models are used as input data of the sediment transport and bottom change model. Numerical model were established by a finite difference method then were applied to the development plan of the eastern Pusan coastal zone Yeonhwa-ri and Daebyun fishing port. We represented the result with 2-D graphics and made comparison between before and after development.

  • PDF

Numerical Prediction of Beach Topographical Evolution (해빈지형변형(海濱地形變形)의 수식예측모형(數式豫測模型))

  • Lee, Jong Kyu;Lee, Jong In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.177-188
    • /
    • 1991
  • The littoral drift in the nearshore zone occurs mainly due to wave action and nearshore currents. Beach topotraphical evolution model presented in this study shows the possibility which can be applied to the prediction of beach deformation over short time interval, associated with the construction of coastal structures. The 3-dimensional beach evolution model, based on Watanabe's equation and Deguchi's flux model, is developed and consists of three submodels of wave transformation, rip-currents, and beach deformation. This model is applied to the several cases with different conditions and compared with the results of Watanabe's numerical model. In addition, the effects of parameters involved are discussed.

  • PDF

Some High-Frequency Variability of Currents Obtained by "GeoDrifters" in the Tsushima Current Region

  • Seung, Young Ho;Park, Jong Jin;Kwon, Young-Yeon;Kim, Sung-Joon;Kim, Hong-Sun;Park, Yong-Chul
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • The "GeoDrifter" is a newly-developed surface drifter with high temporal resolution. It is the first time that high-frequency drifters have been deployed in the East/Japan Sea. The purpose of this study is to introduce the phenomena experienced by these drifters flowing along with the Tsushima Current across the East/Japan Sea, focusing on high-frequency variability, and to discuss them in comparison with previous observations. The observed basin-scale circulation of the Tsushima Current generally coincides well with the known schematic circulation. The GeoDrifter trajectories also show inertial oscillations almost everywhere in the oceanic regions of the East/Japan Sea, strong semi-diurnal tidal currents in the western part of Korea Strait, diurnal currents much stronger than semi-diurnal currents in the upstream region of the Nearshore Branch off the Japanese coast, and many warm eddies in the Yamato Basin, all comparable to the observational results reported in the previous studies. An interesting point is that the semi-diurnal tidal currents undergo a great spatial variation in the western part of the Korea Strait. The observed features that cannot be explained are, among others, strong counter-clockwise motions with oscillating period about 51 hours appearing in the upstream region of the Nearshore Branch off the Japanese coast and the different tidal behaviors between upstream and downstream regions of the latter.

Remote Sensing of Wave Trajectory in Surf Zone using Oblique Digital Videos (해안 디지털 비디오를 이용한 쇄파지역에서의 파랑궤적 측정)

  • Yoo, Je-Seon;Shin, Dong-Min;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • A remote sensing technique to identify trajectories of breaking waves in the surf zone using oblique digital nearshore videos is proposed. The noise arising from white foam induced by wave breaking has hindered accurate remote sensing of wave properties in the surf zone. For this reason, this paper focuses on image processing to remove the noise and wave trajectory identification essential for wave property estimation. The nearshore video imagery sampled at 3 Hz are used, covering length scale(100 m). Original image sequences are processed through image frame differencing and directional low-pass image filtering to remove the noise characterized by high frequencies in the video imagery. The extraction of individual wave crest features is conducted using a Radon transform-based line detection algorithm in the processed cross-shore image timestacks having a two-dimensional space-time domain. The number of valid wave crest trajectories identified corresponds to about 2/3 of waves recorded by the in-situ sensors.

Late Quaternary Sedimentation on the Continental Shelf off the South-East Coast of Korea -A Further Evidence of Relict Sediments- (韓半島 南東海域 大陸棚 海底에서의 第四期 後期의 推積作用)

  • Park, Yong-Ahn
    • 한국해양학회지
    • /
    • v.20 no.3
    • /
    • pp.55-61
    • /
    • 1985
  • Two hundred suspended-matter samples were collected from the continental shelf off the southeast coast of Korea during September, 1981, March, 1982 and April 1983. Superficial bottom sediments on the shelf were also taken. Based on the alalyses of TSM distribution and concentration patterns, it is considered that finegrained suspended matters are restricted to nearshore-inner shelf showing a band or zone paralleling with coastal morphology. This fact suggests a limitation of "modern" fine grained sediments to a nearshore and inner shelf band. The sand deposits with the lower value of mud content (<5%) adjacent to the shelf break and on the outer shelf would probably be "relict" sediments (old beach sediments) deposited in response to a lower stand of sea level during the Pleistocene ice age. The transgression did little to alter the distribution of sand on the outer shelf in this particular study area. The progress of shore line was so rapid that a given locality was in the beach zone and subject to rapid longshore drift and extensive reworking only for a few years. Probably the most pronounced effect of the transgression was sorting of the sand, and at least partial winnowing out of the finer fractions.

  • PDF

Water Masses and Salinity in the Eastern Yellow Sea from Winter to Spring

  • Park, Moon-Jin;Oh, Hee-Jin
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2004
  • In order to understand the water masses and their distribution in the eastern Yellow Sea from winter to spring, a cluster analysis was applied to the temperature and salinity data of Korea Oceanographic Data Center from 1970 to 1990. From December to April, Yellow Sea Cold Water (YSCW) dominates the eastern Yellow Sea, whereas Eastern Yellow Sea Mixed Water (MW) and Yellow Sea Warm Water (YSWW) are found in the southern part of the eastern Yellow Sea. MW appears at the frontal region around $34^{\circ}N$ between YSCW in the north and YSWW in the south. On the other hand, Tshushima Warm Water (TWW) is found around Jeju Island and the South Sea of Korea. These water masses are relatively well-mixed throughout the water column due to the winter monsoon. However, the water column begins to be stratified in spring due to increased solar heating, the diminishing winds and fresh water discharge, and the water masses in June may be separated into surface, intermediate and bottom layers of the water column. YSWW advances northwestward from December to February and retreats southeastward from February to April. This suggests a periodic movement of water masses in the southern part of the eastern Yellow Sea from winter to spring. YSWW may continue to move eastward with the prevailing eastward current to the South Sea from April to June. Also, the front relaxes in June, but the mixed water advances to the north, increasing salinity. The salinity is also higher in the nearshore region than offshore. This indicates an influx of oceanic water to the north in the nearshore region of the eastern Yellow Sea in spring in the form of mixed water.

Determination of Design Parameters with SWAN Model at Southwest Coast (SWAN모형을 이용한 남서 도서해역에서의 설계 파라메타 추출)

  • Kim, Kang-Min;Kang, Suk-Hyung;Lee, Joong-Woo;Lee, Hoon;Kwon, So-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.253-260
    • /
    • 2005
  • Recently, the storms which hit Korean Peninsula are getting bigger, and the damages from the storms are wide spreaded. Thus, and approach with disaster prebention to offshore area and/or opened island area is neccessary. The existing wave design parameter was calculated with linear regular wave models inputting deep water design wave or wind sources. so it wasn't able to deal with wind-induced waves, interactions with waves, and redistribution of wave energy simultaneously. In this study, we made numerical simulation with SWAN(Simulation Waves Nearshore) Model which can consider development of waves and winds and their interference. The result from this model shows much different with those from existing model's. so the result from this study, especially in this modeling area, could be used for harbor design and coastal disaster prevention field in the future.

  • PDF

Variation Characteristics of Irregular Wave Fields around 2-Dimensional Low-Crested-Breakwater (2차원저천단구조물(LCS)의 주변에서 불규칙파동장의 변동특성)

  • Lee, Kwang-Ho;Choi, Goon Ho;Lee, Jun Hyeong;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.356-367
    • /
    • 2019
  • This study evaluates the variation characteristics of irregular wave fields for two-dimensional Low-Crested Structure (LCS) by olaFlow model based on the two-phases flow by numerical analysis. The numerical results of olaFlow model are verified by comparing irregular wave profile of target wave spectrum and measured one, and their spectra. In addition, spacial variation of irregular wave spectrum, wave transmission ratio, root-mean square wave height, time-averaged velocity and time-averaged turbulent kinetic energy by two-dimensional LCS are discussed numerically. The time-averaged velocity, one of the most important numerical results is formed counterclockwise circulating cell and clockwise nearshore current on the front of LCS, and strong uni-directional flow directing onshore side around still water level.

Characteristics of Nearshore Surge-Intensity (국내 연안의 해일강도 특성)

  • Kang, Ju-Whan;Kim, Yang-Seon;Cho, Hong-Yeon;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.458-465
    • /
    • 2011
  • Characteristics of nearshore surge intensity were investigated by analyzing the tide data at 20 tidal stations. Statistical analysis of the surge data show that surge heights at the western coast are far greater than those at southern and eastern coasts, implying that each coast has its own classified characteristics. Surge height data greater than 30 cm were chosen and their intensities were calculated, and then, typhoon-induced surges were separated. The results show that while surge intensity at the western coast is conspicuous in winter due to the monsoon, it is conspicuous in summer due to the typhoon at other coasts. EOF analysis show that the 1st eigenvector at the western coast is prominent, which is considered to be consistent with above mentioned results.

Development of Highly-Resolved, Coupled Modelling System for Predicting Initial Stage of Oil Spill (유출유의 초기 확산예측을 위한 고해상도 결합모형 개발)

  • Son, Sangyoung;Lee, Chilwoo;Yoon, Hyun-Doug;Jung, Tae Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.189-197
    • /
    • 2017
  • The development and application of accurate numerical models is essential to promptly respond to early stage of oil spill incidents occurring in nearshore area. In this study, the coupled modelling system was developed by integrating the advection-diffusion-transformation model for oil slick with the Boussinesq model, which incorporates non-linear, discrete, turbulent and rotational effects of wavy flows for accurate representation of nearshore hydrodynamics. The developed model examined its applicability through the application into real coastal region with topographical complexity and characteristics of the resulting flow originated from it. The highly-resolved, coupled model developed in this study is believed to assist in establishing the disaster prevention system that can prepare effectively for oil disasters under extreme ocean climate conditions and thus minimize industrial, economical, and environmental damages.