• Title/Summary/Keyword: nearest neighbor rule

Search Result 43, Processing Time 0.022 seconds

Nearest Neighbor Based Prototype Classification Preserving Class Regions

  • Hwang, Doosung;Kim, Daewon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1345-1357
    • /
    • 2017
  • A prototype selection method chooses a small set of training points from a whole set of class data. As the data size increases, the selected prototypes play a significant role in covering class regions and learning a discriminate rule. This paper discusses the methods for selecting prototypes in a classification framework. We formulate a prototype selection problem into a set covering optimization problem in which the sets are composed with distance metric and predefined classes. The formulation of our problem makes us draw attention only to prototypes per class, not considering the other class points. A training point becomes a prototype by checking the number of neighbors and whether it is preselected. In this setting, we propose a greedy algorithm which chooses the most relevant points for preserving the class dominant regions. The proposed method is simple to implement, does not have parameters to adapt, and achieves better or comparable results on both artificial and real-world problems.

Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis (최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가)

  • Shim, Se-Yong;Hwang, Doo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.73-81
    • /
    • 2015
  • The paper proposes a prototype selection method and evaluates the generalization performance of standard algorithms and prototype based classification learning. The proposed prototype classifier defines multidimensional spheres with variable radii within class areas and generates a small set of training data. The nearest-neighbor classifier uses the new training set for predicting the class of test data. By decomposing bias and variance of the mean expected error value, we compare the generalization errors of k-nearest neighbor, Bayesian classifier, prototype selection using fixed radius and the proposed prototype selection method. In experiments, the bias-variance changing trends of the proposed prototype classifier are similar to those of nearest neighbor classifiers with all training data and the prototype selection rates are under 27.0% on average.

Plurality Rule-based Density and Correlation Coefficient-based Clustering for K-NN

  • Aung, Swe Swe;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.183-192
    • /
    • 2017
  • k-nearest neighbor (K-NN) is a well-known classification algorithm, being feature space-based on nearest-neighbor training examples in machine learning. However, K-NN, as we know, is a lazy learning method. Therefore, if a K-NN-based system very much depends on a huge amount of history data to achieve an accurate prediction result for a particular task, it gradually faces a processing-time performance-degradation problem. We have noticed that many researchers usually contemplate only classification accuracy. But estimation speed also plays an essential role in real-time prediction systems. To compensate for this weakness, this paper proposes correlation coefficient-based clustering (CCC) aimed at upgrading the performance of K-NN by leveraging processing-time speed and plurality rule-based density (PRD) to improve estimation accuracy. For experiments, we used real datasets (on breast cancer, breast tissue, heart, and the iris) from the University of California, Irvine (UCI) machine learning repository. Moreover, real traffic data collected from Ojana Junction, Route 58, Okinawa, Japan, was also utilized to lay bare the efficiency of this method. By using these datasets, we proved better processing-time performance with the new approach by comparing it with classical K-NN. Besides, via experiments on real-world datasets, we compared the prediction accuracy of our approach with density peaks clustering based on K-NN and principal component analysis (DPC-KNN-PCA).

An Efficient Local Search Algorithm for the Asymmetric Traveling Salesman Problem Using 3-Opt (비대칭 외판원문제에서 3-Opt를 이용한 효율적인 국지탐색 알고리즘)

  • 김경구;권상호;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.59
    • /
    • pp.1-10
    • /
    • 2000
  • The traveling salesman problem is a representative NP-Complete problem. It needs lots of time to get a solution as the number of city increase. So, we need an efficient heuristic algorithm that gets good solution in a short time. Almost edges that participate in optimal path have somewhat low value cost. This paper discusses the property of nearest neighbor and 3-opt. This paper uses nearest neighbor's property to select candidate edge. Candidate edge is a set of edge that has high probability to improve cycle path. We insert edge that is one of candidate edge into intial cycle path. As two cities are connected. It does not satisfy hamiltonian cycle's rule that every city must be visited and departed only one time. This paper uses 3-opt's method to sustain hamiltonian cycle while inserting edge into cycle path. This paper presents a highly efficient heuristic algorithm verified by numerous experiments.

  • PDF

Matching Agent using Automatic Weight-Control (가중치 자동 조절을 이용한 매칭 에이전트)

  • 김동조;박영택
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.439-445
    • /
    • 2000
  • 다차원의 속성들을 포함한 대용량의 데이터베이스 또는 점보 저장소의 데이터로부터 지식을 추출하고 이를 활용하기 위해서는 데이터 마이닝의 인공지능 기법 중 기계학습을 활용할 수 있다. 본 논문은 질의어를 바탕으로 각 작성들에 가중치를 적용하여 사용자가 원하는 데이터 집합을 분류하고, 사용자 피드백을 통하여 속성 가중치를 동적으로 변화시킴으로써 검색결과를 향상시키는 방법을 제안한다. 본 논문에서는 데이터 집합을 분류해내기 위해서 각 속성간의 거리에 가중치를 적용하는 k-nearest neighbor 분류법을 사용하였고, 속성 가중치를 동적으로 변화시키는 규칙을 추출하기 위한 방법으로는 결정 트리 생성에 의한 규칙(decision rule) 생성 방법을 적용하였다. 검색결과 향상을 \ulcorner이기 위한 실험으로써 온라인 커플매칭(online couple-matching) 시스템의 핵심부문을 구현하고 이를 적용하였다.

  • PDF

An Online Forklift Dispatching Algorithm Based on Minimal Cost Assignment Approach (최소 비용할당 기반 온라인 지게차 운영 알고리즘)

  • kwon, BoBae;Son, Jung-Ryoul;Ha, Byung-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Forklifts in a shipyard lift and transport heavy objects. Tasks occur dynamically and the rate of the task occurrence changes over time. Especially, the rate of the task occurrence is high immediately after morning and afternoon business hours. The weight of objects varies according to task characteristic, and a forklift also has the workable or allowable weight limit. In this study, we propose an online forklift dispatching algorithm based on nearest-neighbor dispatching rule using minimal cost assignment approach in order to attain the efficient operations. The proposed algorithm considers various types of forklift and multiple jobs at the same time to determine the dispatch plan. We generate dummy forklifts and dummy tasks to handle unbalance in the numbers of forklifts and tasks by taking their capacity limits and weights. In addition, a method of systematic forklift selection is also devised considering the condition of the forklift. The performance indicator is the total travel distance and the average task waiting time. We validate our approach against the priority rule-based method of the previous study by discrete-event simulation.

Development of Rotating Machine Vibration Condition Monitoring System based upon Windows NT (Windows NT 기반의 회전 기계 진동 모니터링 시스템 개발)

  • 김창구;홍성호;기석호;기창두
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.98-105
    • /
    • 2000
  • In this study, we developed rotating machine vibration condition monitoring system based upon Windows NT and DSP Board. Developed system includes signal analysis module, trend monitoring and simple diagnosis using threshold value. Trend analysis and report generation are offered with database management tool which was developed in MS-ACCESS environment. Post-processor, based upon Matlab, is developed for vibration signal analysis and fault detection using statistical pattern recognition scheme based upon Bayes discrimination rule and neural networks. Concerning to Bayes discrimination rule, the developed system contains the linear discrimination rule with common covariance matrices and the quadratic discrimination rule under different covariance matrices. Also the system contains k-nearest neighbor method to directly estimate a posterior probability of each class. The result of case studies with the data acquired from Pyung-tak LNG pump and experimental setup show that the system developed in this research is very effective and useful.

  • PDF

A Design of Pattern Recognition Algorithm as a Collection of Hypercubic Regions (Hypercube 영역의 집합으로 표현된 패턴인식 알고리즘의 설계)

  • Baek Sop Kim
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.23-29
    • /
    • 1992
  • In this paper, a method of representing the pattern classifier as a collection of hypercubic regions is proposed. This representation has following advantages over the conventional ones : 1) a simple form of human knowledge can be used in designing the classifier, 2) the form of the classifier is suit for the rule-based system, and 3) this can reduce the classification time. A method of synthesis of the classifier under this representation is also proposed and the experimental result shows that the proposed method is faster than the well-known nearest neighbor classifier.

  • PDF

The Performance Improvement of Face Recognition Using Multi-Class SVMs (다중 클래스 SVMs를 이용한 얼굴 인식의 성능 개선)

  • 박성욱;박종욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.43-49
    • /
    • 2004
  • The classification time required by conventional multi-class SVMs(Support Vector Machines) greatly increases as the number of pattern classes increases. This is due to the fact that the needed set of binary class SVMs gets quite large. In this paper, we propose a method to reduce the number of classes by using nearest neighbor rule (NNR) in the principle component analysis and linear discriminant analysis (PCA+LDA) feature subspace. The proposed method reduces the number of face classes by selecting a few classes closest to the test data projected in the PCA+LDA feature subspace. Results of experiment show that our proposed method has a lower error rate than nearest neighbor classification (NNC) method. Though our error rate is comparable to the conventional multi-class SVMs, the classification process of our method is much faster.

Block Classification of Document Images by Block Attributes and Texture Features (블록의 속성과 질감특징을 이용한 문서영상의 블록분류)

  • Jang, Young-Nae;Kim, Joong-Soo;Lee, Cheol-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.856-868
    • /
    • 2007
  • We propose an effective method for block classification in a document image. The gray level document image is converted to the binary image for a block segmentation. This binary image would be smoothed to find the locations and sizes of each block. And especially during this smoothing, the inner block heights of each block are obtained. The gray level image is divided to several blocks by these location informations. The SGLDM(spatial gray level dependence matrices) are made using the each gray-level document block and the seven second-order statistical texture features are extracted from the (0,1) direction's SGLDM which include the document attributes. Document image blocks are classified to two groups, text and non-text group, by the inner block height of the block at the nearest neighbor rule. The seven texture features(that were extracted from the SGLDM) are used for the five detail categories of small font, large font, table, graphic and photo blocks. These document blocks are available not only for structure analysis of document recognition but also the various applied area.

  • PDF