• Title/Summary/Keyword: nearest neighbor distance

Search Result 131, Processing Time 0.023 seconds

A Low Complexity PTS Technique using Threshold for PAPR Reduction in OFDM Systems

  • Lim, Dai Hwan;Rhee, Byung Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2191-2201
    • /
    • 2012
  • Traffic classification seeks to assign packet flows to an appropriate quality of service (QoS) class based on flow statistics without the need to examine packet payloads. Classification proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then the classification rules are evaluated using test data. In this paper, we use self-organizing map and K-means clustering as unsupervised machine learning methods to identify the inherent classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk data transfer, and interactive applications. The K-nearest neighbor classifier was found to be highly accurate for the traffic data and significantly better compared to a minimum mean distance classifier.

Classification of Traffic Flows into QoS Classes by Unsupervised Learning and KNN Clustering

  • Zeng, Yi;Chen, Thomas M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.134-146
    • /
    • 2009
  • Traffic classification seeks to assign packet flows to an appropriate quality of service(QoS) class based on flow statistics without the need to examine packet payloads. Classification proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then the classification rules are evaluated using test data. In this paper, we use self-organizing map and K-means clustering as unsupervised machine learning methods to identify the inherent classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk data transfer, and interactive applications. The K-nearest neighbor classifier was found to be highly accurate for the traffic data and significantly better compared to a minimum mean distance classifier.

Hybrid Parallel Genetic Algorithm for Traveling Salesman Problem (순회 판매원 문제를 위한 하이브리드 병렬 유전자 알고리즘)

  • Kim, Ki-Tae;Jeo, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.107-114
    • /
    • 2011
  • Traveling salesman problem is to minimize the total cost for a traveling salesman who wants to make a tour given finite number of cities along with the cost of travel between each pair them, visiting each cities exactly once before returning home. Traveling salesman problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study suggests a hybrid parallel genetic algorithm(HPGA) for traveling salesman problem The suggested algorithm combines parallel genetic algorithm, nearest neighbor search, and 2-opt. The suggested algorithm has been tested on 7 problems in TSPLIB and compared the results of existing methods(heuristics, meta-heuristics, hybrid, and parallel). Experimental results shows that HPGA could obtain good solution in total travel distance minimization.

Nearest Neighbor Based Prototype Classification Preserving Class Regions

  • Hwang, Doosung;Kim, Daewon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1345-1357
    • /
    • 2017
  • A prototype selection method chooses a small set of training points from a whole set of class data. As the data size increases, the selected prototypes play a significant role in covering class regions and learning a discriminate rule. This paper discusses the methods for selecting prototypes in a classification framework. We formulate a prototype selection problem into a set covering optimization problem in which the sets are composed with distance metric and predefined classes. The formulation of our problem makes us draw attention only to prototypes per class, not considering the other class points. A training point becomes a prototype by checking the number of neighbors and whether it is preselected. In this setting, we propose a greedy algorithm which chooses the most relevant points for preserving the class dominant regions. The proposed method is simple to implement, does not have parameters to adapt, and achieves better or comparable results on both artificial and real-world problems.

Batch Processing Algorithm for Moving k-Farthest Neighbor Queries in Road Networks (도로망에서 움직이는 k-최원접 이웃 질의를 위한 일괄 처리 알고리즘)

  • Cho, Hyung-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.223-224
    • /
    • 2021
  • Recently, k-farthest neighbor (kFN) queries have not as much attention as k-nearest neighbor (kNN) queries. Therefore, this study considers moving k-farthest neighbor (MkFN) queries for spatial network databases. Given a positive integer k, a moving query point q, and a set of data points P, MkFN queries can constantly retrieve k data points that are farthest from the query point q. The challenge with processing MkFN queries in spatial networks is to avoid unnecessary or superfluous distance calculations between the query and associated data points. This study proposes a batch processing algorithm, called MOFA, to enable efficient processing of MkFN queries in spatial networks. MOFA aims to avoid dispensable distance computations based on the clustering of both query and data points. Moreover, a time complexity analysis is presented to clarify the effect of the clustering method on the query processing time. Extensive experiments using real-world roadmaps demonstrated the efficiency and scalability of the MOFA when compared with a conventional solution.

  • PDF

A Study of Environmental Effects on Galaxy Spin Using MaNGA Data

  • Lee, Jong Chul;Hwang, Ho Seong;Chung, Haeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.47.2-47.2
    • /
    • 2017
  • We investigate the environmental effects on galaxy spin using the sample of ~1100 galaxies from the first public data of MaNGA integral field unit survey. We determine the spin parameter ${\lambda}_{Re}$ of galaxies by analyzing the two-dimensional stellar kinematic measurements within the effective radius, and study its dependence on the large-scale (background mass density determined with 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbor galaxy) environments. We first examine the mass dependence of galaxy spin, and find that the spin parameter decreases with stellar mass at log ($M_{\ast}/M_{\odot}$) > 10, consistent with previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameter of galaxies in each subsample does not change with the background density, but do change with the distance to and morphology of the nearest neighbor. The spin parameter increases when late-type neighbors are within the virial radius, and decreases when early-type neighbors are within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the effects of small-scale environments such as hydrodynamic galaxy-galaxy interactions are substantial.

  • PDF

A Representation and Matching Method for Shape-based Leaf Image Retrieval (모양기반 식물 잎 이미지 검색을 위한 표현 및 매칭 기법)

  • Nam, Yun-Young;Hwang, Een-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1013-1020
    • /
    • 2005
  • This paper presents an effective and robust leaf image retrieval system based on shape feature. Specifically, we propose an improved MPP algorithm for more effective representation of leaf images and show a new dynamic matching algorithm that basically revises the Nearest Neighbor search to reduce the matching time. In particular, both leaf shape and leaf arrangement can be sketched in the query for better accuracy and efficiency. In the experiment, we compare our proposed method with other methods including Centroid Contour Distance(CCD), Fourier Descriptor, Curvature Scale Space Descriptor(CSSD), Moment Invariants, and MPP. Experimental results on one thousand leaf images show that our approach achieves a better performance than other methods.

Transfer Matrix Algorithm for Computing the Geometric Quantities of a Square Lattice Polymer

  • Lee, Julian
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1808-1813
    • /
    • 2018
  • I develop a transfer matrix algorithm for computing the geometric quantities of a square lattice polymer with nearest-neighbor interactions. The radius of gyration, the end-to-end distance, and the monomer-to-end distance were computed as functions of the temperature. The computation time scales as ${\lesssim}1.8^N$ with a chain length N, in contrast to the explicit enumeration where the scaling is ${\sim}2.7^N$. Various techniques for reducing memory requirements are implemented.

Comparison of Forest Growing Stock Estimates by Distance-Weighting and Stratification in k-Nearest Neighbor Technique (거리 가중치와 층화를 이용한 최근린기반 임목축적 추정치의 정확도 비교)

  • Yim, Jong Su;Yoo, Byung Oh;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.374-380
    • /
    • 2012
  • The k-Nearest Neighbor (kNN) technique is popularly applied to assess forest resources at the county level and to provide its spatial information by combining large area forest inventory data and remote sensing data. In this study, two approaches such as distance-weighting and stratification of training dataset, were compared to improve kNN-based forest growing stock estimates. When compared with five distance weights (0 to 2 by 0.5), the accuracy of kNN-based estimates was very similar ranged ${\pm}0.6m^3/ha$ in mean deviation. The training dataset were stratified by horizontal reference area (HRA) and forest cover type, which were applied by separately and combined. Even though the accuracy of estimates by combining forest cover type and HRA- 100 km was slightly improved, that by forest cover type was more efficient with sufficient number of training data. The mean of forest growing stock based kNN with HRA-100 and stratification by forest cover type when k=7 were somewhat underestimated ($5m^3/ha$) compared to statistical yearbook of forestry at 2011.

Distance Browsing Query Processing using Query Result Set (질의 결과를 이용한 거리 브라우징 질의의 처리)

  • Park Dong-Joo;Park Sangwon;Chung Tae-Sun;Lee Sang-Won
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.673-682
    • /
    • 2005
  • Distance browsing queries, namely k-nearest neighbor queries, are the most important queries in spatial database applications, e.g., Geographic Information Systems(GISs). Recently, GIS applications trends to extend themselves toward wide multi-user environments such as the Web. Since many techniques for such queries, where Hjaltason and Samet's algorithm is the most efficient one, were optimized for only one query, we need to complement them suitable for multi-user environments. It can be a good approach that we store many individual query results in a cache, i.e., query result caching and reuse them in evaluating incoming queries, j.e., query result matching. In this paper, we propose a complementary Hjaltason and Samet's algerian capable of reusing previous query results in a cache for answering distance browsing queries in multi-user GIS environments. Our experimental results conform the efficiency of our approach.