• Title/Summary/Keyword: near-minimum-time

Search Result 160, Processing Time 0.028 seconds

Use of near-fault pulse-energy for estimating critical structural responses

  • Chang, Zhiwang;Liu, Zhanhui;Chen, Zhenhua;Zhai, Changhai
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.415-423
    • /
    • 2019
  • Near-fault ground motions can impose particularly high seismic demands on structures due to the pulses that are typically observed in the velocity time-histories. In this study it is empirically found that the critical response can be estimated from the directions corresponding to the maximum (max) or minimum (min) pulse-energy. Determination of the pulse-energy requires removing of the high-frequency content. For achieving this, the wavelet analysis and the least-square-fitting (LSF) algorithm are adopted. Results obtained by the two strategies are compared and differences between them are analyzed. Finally, the relationship between the critical response and the response derived from directions having the max or min pulse-energy confirms that using the pulse-energy for deriving the critical response of the building structures is reasonable.

Parameter Calibration and Sensitivity Analysis for Numerical Modeling of Flow and Bed Changes near the Opening Gate for Sediment Release (배사구 유입부 흐름 및 하상변동 수치모의를 위한 매개변수 검정 및 민감도 분석에 관한 연구)

  • Jang, Eun-Kyung;Lim, Jong-Chul;Ji, Un;Yeo, Woon-Kwang
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1151-1163
    • /
    • 2011
  • The bed change analysis near the opening gate of a dam or weir to release deposited sediments have been conducted mostly using the numerical models. However, the use of unverified input parameters in the numerical model is able to produce the different results with natural and real conditions. Also, the bed changes near the opening gate of a dam or weir calculated with a numerical model could be varied depending on the geometry extent included the downstream area with supercritical flow in the model. In addition, the different time steps could provide different results in the bed change calculation, even though other conditions such as input parameters, geometries, and total simulation time were same. Therefore, in this study, hydraulic experiments were performed to validate the eddy viscosity coefficient which is the one of important input parameters in the RMA2 model and relevant to variation of simulation results. The bed changes were calculated using the SED2D model based on flow results calculated in the RMA2 model with the verified and selected eddy viscosity coefficient and also compared with experimental results. The bed changes near the opening gate were underestimated in the numerical model comparing with experimental results except only the numerical case without the modeling section of sediment release pipe and downstream area where the supercritical flow was produced. For the simulation of minimum time steps, different shapes of scour hole were produced in numerical and physical modeling.

Fault-tolerant Scheduling of Real-time Parallel Tasks with Energy Efficiency on Multicore Processors (멀티코어 프로세서 상에서 에너지 효율을 고려한 실시간 병렬 작업들의 결함 포용 스케쥴링)

  • Lee, Kwanwoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.6
    • /
    • pp.173-178
    • /
    • 2014
  • By exploiting parallel processing, the proposed scheduling scheme enhances energy saving capability of multicore processors for real-time tasks while satisfying deadline and fault tolerance constraints. The scheme searches for a near minimum-energy schedule within a polynomial time, because finding the minimum-energy schedule on multicore processors is a NP-hard problem. The scheme consumes manifestly less energy than the state-of-the-arts method even with low parallel processing speedup as well as with high parallel processing speedup, and saves the energy consumption up to 86%.

Approximation ratio 2 for the Minimum Number of Steiner Points (최소 개수의 스타이너 포인트를 위한 근사 비율 2)

  • 김준모;김인범
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.387-396
    • /
    • 2003
  • This paper provides an approximation algorithm for STP-MSP(Steiner Tree Problem with minimum number of Steiner Points).Because it seems to be impossible to have a PTAS(Polynomial Time Approximation Schemes), which gives the near optimal solutions, for the problem, the algorithm of this paper is an alternative that has the approximation ratio 2 with $n^{O(1)}$ run time. The importance of this paper is the potential to solve other related unsolved problems. The idea of this paper is to distribute the error allowance over the problem instance so that we may reduce the run time to polynomial bound out of infinitely many cases. There are earlier works[1,2] that show the approximations that have practical run times with the ratio of bigger than 2, but this paper shows the existence of a poly time approximation algorithm with the ratio 2.

NUMERICAL STUDY ON THE CLOCKING EFFECT IN A 1.5 STAGE AXIAL TURBINE (1.5단 축류터빈에서의 Clocking 효과에 관한 수치적 연구)

  • Park, Jong-Il;Choi, Min-Suk;Baek, Je-Hyun
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.1-8
    • /
    • 2006
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since the first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

Numerical Study on the Clocking Effect in a 1.5 Stage Axial Turbine (1.5단 축류 터빈에서의 Clocking 효과에 관한 수치적 연구)

  • Park, Jong-Il;Choi, Min-Suk;Baek, Je-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.473-480
    • /
    • 2005
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since be first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

  • PDF

Far-field Transport of Effluent Plumes Discharged from Masan Sea Outfalls

  • Kim, Young-Do;Kang, See-Whan;Seo, Il-Won;Oh, Byung-Cheol
    • Ocean and Polar Research
    • /
    • v.22 no.2
    • /
    • pp.69-80
    • /
    • 2000
  • A 3-D particle tracking model with normalized characteristic equations has been developed to predict the variation of near-field mixing characteristics and the far-field transport of the effluent plumes discharged from sea outfalls. The model was applied to the case study on the Masan sea outfall plumes discharged through a submerged multiport-diffuser. Numerical simulations of the effluent transport for 15 days which cover neap and spring tidal cycles in Masan Bay were conducted using fall velocities of the solid wastes and the initial plume characteristics obtained from normalized near-field characteristic equations. The results showed that time variations in near-field minimum dilutions with tidal ambient flow conditions are about $45{\sim}49$. Most of the heavy particles in the effluent plumes were settled and deposited in the vicinity of the outfalls immediately, and the finer particles were transported eastwards 3 km away from the outfalls for 15 days. A similar depositional trend of contaminated sediment was also found during a recent field survey.

  • PDF

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Development of a Tool to Automate One-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.172-176
    • /
    • 2015
  • In this research, a tool was developed to automate one-dimensional finite element analysis (1D FEA) for design of a machine tool spindle. Based on object-oriented programing, this tool employs the objects of a CAD system to construct a geometric model and then to convert it into the FE model of 1D beams at the workbenches of the CAD system with minimum data to define the spindle such as bearing positions and cross-sections of the shaft. Graphic user interfaces were developed for users to interact with the tool. This tool is helpful in identifying a near optimal design of the spindle with the automation of the FEA process with numerous design changes in minimum time and efforts. It is also expected to allow even design engineers to perform the FEA in search of an optimal design of the machine tool spindle.

Flow Characteristics of Two-Dimensional Closed Cavity near Unsteady Critical Reynolds Numbers (2차원의 밀폐캐비티의 비정상 임계레이놀즈수 근방의 유동특성)

  • Kim, Jin-Gu;Kim, Chun-Sik;Lee, Yeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.22-29
    • /
    • 1996
  • Flow characteristics of two-dimensional closed square cavities near unsteady critical Reynolds numbers were studied numerically at four Reynolds numbers : $8{\times}10^3,\;8.5{\times}10^3,\;9{\times}10^3\;and\;9.5{\times}10^3.$ A convection conservative difference scheme based upon SOLA to maintain the nearly 2nd-order spatial accuracy is adopted on irregular grid formation. Irregular grid number is $80{\times}80$ and its minimum size is about 1/400 of the cavity height(H) and its maximum is about 1/53 H. The result shows that the critical Reynolds number indicating the emergence of flow wnsteadiness is ranging from Re=$8{\times}10^3\;to\;8.5{\times}10^3$ and their flow patterns reveal periodic fluctuation during transient and fully developed stages. But macroscopic flow behavior in terms of instantaneous and time-mean characteristics represent remarkable difference.

  • PDF