Approximation ratio 2 for the Minimum Number of Steiner Points

최소 개수의 스타이너 포인트를 위한 근사 비율 2

  • Published : 2003.08.01

Abstract

This paper provides an approximation algorithm for STP-MSP(Steiner Tree Problem with minimum number of Steiner Points).Because it seems to be impossible to have a PTAS(Polynomial Time Approximation Schemes), which gives the near optimal solutions, for the problem, the algorithm of this paper is an alternative that has the approximation ratio 2 with $n^{O(1)}$ run time. The importance of this paper is the potential to solve other related unsolved problems. The idea of this paper is to distribute the error allowance over the problem instance so that we may reduce the run time to polynomial bound out of infinitely many cases. There are earlier works[1,2] that show the approximations that have practical run times with the ratio of bigger than 2, but this paper shows the existence of a poly time approximation algorithm with the ratio 2.

본 논문은 STP-MSP을 위한 근사 알고리즘을 제안한다. 이 문제에 대해 근접한 최적 해법을 제공하는 PTAS를 가지는 것이 불가능하기 때문에, 본 논문의 연구는 $n^{O(1)}$의 실행 시간과 근사 비율 2를 가지는 하나의 대안을 제시한다. 본 연구의 중요성은 관련된 다른 미해결문제에 대하여 해결 가능성을 제시하는 것이다. 본 논문의 주요 제안내용은 문제 인스턴스에게 허용오차를 배분하는 것이다. 이로 인해 우리는 무한적 경우에서 다항적 범위로 실행시간을 줄일 수 있다. 관련연구[1,2]가 근사 비율이 2보다 크지만 보다 현실적인 실행시간을 갖는 근사 알고리즘들을 제시한 것이라면, 본 연구는 근사 비율이 2인 근사 알고리즘의 존재를 밝힌 것이다.

Keywords

References

  1. Donghui Chen, Ding Zhu Du, Xiao Dong Hu, Guo Hui Lin, Lusheng Wang and Guoliang Xue, Approximations for Steiner Trees with Minimum Number of Steiner Points, Journal of Global Optimization, Vol. 18, No.1, pp. 17-33, 2000 https://doi.org/10.1023/A:1008384012064
  2. L. Wang and D. Z. Du, Approximations for a Bottleneck Steiner Tree problem, Algorithmica, Vol. 32, pp. 554-561, 2002 https://doi.org/10.1007/s00453-001-0089-4
  3. S. Arora, Polynomial-time approximation schemes for Euclidean TSP and other geometric problems, Proc. 37th IEEE Symp. on Foundations of Computer Science, pp. 2-12, 1996 https://doi.org/10.1109/SFCS.1996.548458
  4. S. Arora, Nearly linear time approximation schemes for Euclidean TSP and other geometric problems, Proc. 38th IEEE Symp. on Foundations of Computer Science, pp. 554-563, 1997 https://doi.org/10.1109/SFCS.1997.646145
  5. F.K. Hwang, D.S. Richards and P.Winter, The Steiner Tree Problem, Annals of Discrete Mathematics, Vol.53, North-Holland, 1992
  6. M.R. Garey, R.L.Graham and D.S.Johnson, The complexity of computing Steiner Minimal Trees, Journal on Applied Mathmatics, Vol. 32, pp. 853-859, 1997 https://doi.org/10.1137/0132072
  7. E.N. Gilbert and H.O.Pollak, Steiner minimal trees, SIAM Journal on Applied Mathmatics, Vol.16, pp. 1-29, 1968 https://doi.org/10.1137/0116001
  8. Ding Zhu Du, F.K. Hwang, A Proof of Gilbert Pollark's conjecture on the Steiner ratio, Algorithmica, Vol. 7, pp. 121-135, 1992 https://doi.org/10.1007/BF01758755
  9. D.Z. Du and F.K. Hwang, An approach for proving lower bounds: solution of Gilbert Pollak conjecture on Steiner ratio, Proceedings of IEEE 32st FOCS, pp. 76-85, 1990 https://doi.org/10.1109/FSCS.1990.89526
  10. G.H. Lin and G.L.Xue, Steiner tree problem wuth minimum number of Steiner points and bounded edge length, Information Processing Letters, Vol. 69, pp. 53-57, 1999 https://doi.org/10.1016/S0020-0190(98)00201-4
  11. X.Cheng, J. M. Kim and B. Lu, A Polynomial Time Approximation Scheme for the Problem of Interconnecting Highway, Journal of Combinatorial Optimazation, vol.5, No.3, pp. 327-343, Feb. 2001 https://doi.org/10.1023/A:1011497227406
  12. J. M. Kim, ;X.Cheng and Ding Zhu Du, A PTAS for Grade of Service Minimum Tree Problem, Technical Report of University of Minnesota