• 제목/요약/키워드: navier method

검색결과 1,239건 처리시간 0.024초

수직평판 주위를 흐르는 느린 점성류의 수치해석 (Computation of the Slow Viscous Flow about a Normal Plate)

  • 인기문;최도형;김문언
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2329-2338
    • /
    • 1993
  • An accurate analysis procedure to solve the flow about a flat plate at various incidences has been developed. The Navier-Stokes equations of stream function and vorticity form are solved in a sufficiently large computational domain, in which the grid lines are mutually orthogonal. The details of the flow near the singularity at the tip of the plate is well captured by the analytic solution which is asymptotically matched to the numerically generated outer solution. The solution for each region is obtained iteratively : the solution of one (inner or outer) region uses that of the other as the boundary condition after each cycle. The resulting procedure is accurate everywhere and also computationally efficient as the singularity has been removed. It is applied to the flat plate for a wide range of Re : the results agree very well with the existing computation and experiment.

뭉뚝물체 주변에 형성된 극초음속유동에 대한 Navier-Stokes 계산 (Navier-Stokes Computations for Hypersonic flow on Blunt Bodies)

  • 백두성;김득상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.91-97
    • /
    • 2001
  • The thin-layer Navier-Stokes equations are solved for the hypersonic flow over blunt cone configurations with applications to laminar as well as turbulent flows. The equations are expressed in the forms of flux-vector splitting and explicit algorithm. The upwind schemes of Steger-Warming and van Leer are investigated in their ability to accurately predict the heating loads along the surface of the body. A comparison with the second order extensions of these schemes is made and a hybrid scheme incorporating a combination of central differencing and flux-vector-splitting is presented. This scheme is also investigated in its ability to accurately predict heat transfer distributions.

  • PDF

터널에 진입하는 고속전철에 의한 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구 (Numerical study of Three-Dimensional Characteristics of Flow Field and Compression Wave Induced by High Speed Train Entering into a Tunnel)

  • 신창훈;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.91-98
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the flow field and compression wave around the high speed train which Is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation around the nose region was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed and presented.

  • PDF

SMAC 음해법에 의한 큰 곡률를 갖는 정사각형 덕트내의 비압축성 층류 입구유동 (Incompressible Laminar Entry Flows in a Square Duct of Strong Curvature Using an Implicit SMAC Scheme)

  • 신병록;정소추 이 명
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.35-46
    • /
    • 1996
  • 원심형 임펠러 내부 유로등 큰 곡률을 수반하는 터보기계 요소의 유동해석을 위한 계산코드를 개발하였다. 이 코드에서는 곡선좌표계에 유도된 3차원 비압축성 Navier-Stokes의 운동 방정식을 SMAC 음해법으로 푼다. 이 코드를 이용하여 유로의 단면이 정사각형이고 90도로 굽은 덕트내부의 층류 입구유동을 해석하고, 굽은 관 특유의 유동현상을 수치모사하였다 또한 곡관부 입구에서 충분히 발달한 유동, 또는 발달중인 유동이 유입될 경우에 이것이 곡관부 내부의 유동에 미치는 영향을 상·하류의 계산영역이 서로 다를 몇몇 유동장에 대하여 조사하고, 본 계산에서 얻어진 결과와 실형결과와의 비교로 본 3차원 유동해석 코드의 유효성을 검토 하였다.

  • PDF

예조건화 압축성 알고리즘에 의한 저마하수 유동장 해석기법 (Preconditioned Compressible Navier- Stokes Algorithm for Low Mach Number Flows)

  • 고현;윤웅섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.35-42
    • /
    • 1998
  • Time marching algorithms applied to compressible Navier-Stokes equation have a convergence problem at low Mach number. It is mainly due to the eigenvalue stiffness and pressure singularity as Mach number approaches to zero. Among the several methods to overcome the shortcomings of time marching scheme, time derivative preconditioning method have been used successfully. In this numerical analysis, we adopted a preconditioner of K.H. Chen and developed a two-dimensional, axisymmetric Navier-Stokes program. The steady state driven cavity flow and backward facing step flow problems were computed to confirm the accuracy and the robustness of preconditioned algorithm for low Mach number flows. And the transonic and supersonic flows insice the JPL axisymmetric nozzle internal flow is exampled to investigate the effects of preconditioning at high Mach number flow regime. Test results showed excellent agreement with the experimental data.

  • PDF

일반 비직교 표면좌표계에서의 비압축성 Navier-Stokes방정식의 수치해석 (Calculation of the incompressible Navier-stokes equations in generalized nonorthogonal body fitted coordinate system)

  • 강동진;배상수
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.1015-1027
    • /
    • 1996
  • In this paper, a numerical procedure for the calculation of the incompressible Navier-Stokes equations in a generalized nonorthogonal body fitted coordinate system is proposed and is validated through three test problems. Present numerical procedure derives the pressure equation by using the pressure substitution method on the regular grid system, and discretized momentum equations are based on the covariant velocity components. Cavity flow, backward facing step flow, and two dimensional channel flow with a sinusoidal wavy wall are chosen as three test problems. Numerical solutions obtained by present procedure shows a good agreement with previous numerical and/or experimental results. Convergence rate is also satisfactory.

예조건화된 Navier-Stokes 방정식에서의 풍상차분법의 수치특성 (Numerical Characteristics of Upwind Schemes for Preconditioned Navier-Stokes Equations)

  • 길재흥;이두환;손덕영;최윤호;권장혁;이승수
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1122-1133
    • /
    • 2003
  • Numerical characteristics of implicit upwind schemes, such as upwind ADI, line Gauss-Seidel (LGS) and point Gauss-Seidel (LU) algorithms, for Navier-Stokes equations have been investigated. Time-derivative preconditioning method was applied for efficient convergence at low Mach/Reynolds number regime as well as at large grid aspect ratios. All the algorithms were expressed in approximate factorization form and von Neumann stability analysis was performed to identify stability characteristics of the above algorithms in the presence of high grid aspect ratios. Stability analysis showed that for high aspect ratio computations, the ADI and LGS algorithms showed efficient damping effect up to moderate aspect ratio if we adopt viscous preconditioning based on min-CFL/max-VNN time-step definition. The LU algorithm, on the other hand, showed serious deterioration in stability characteristics as the grid aspect ratio increases. Computations for several practical applications also verified these results.

P2P1/P1P1 유한요소 공식을 이용한 비압축성 Navier-Stokes 방정식의 분리 해법에 대한 연구 (STUDY ON THE SPLITTING ALGORITHMSOF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS USING P1P1/P2P1 FINITE ELEMENT FORMULATION)

  • 조명환;최형권;유정열;박재인
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.117-124
    • /
    • 2005
  • Splitting algorithms of the incompressible Navier-Stokes equations using P1P1/P2P1 finite element formulation are newly proposed. P1P1 formulation allocates velocity and pressure at the same nodes, while P2P1 formulation allocates pressure only at the vertex nodes and velocity at both the vertex and mid nodes. For comparison of the elapsed time and accuracy of the two methods, they have been applied to the well-known benchmark problems. The three cases chosen are the two-dimensional steady and unsteady flows around a fixed cylinder, decaying vortex, and impinging slot jet. It is shown that the proposed P2P1 semi-splitting method performs better than the conventional P1P1 splitting method in terms of both accuracy and computation time.

  • PDF

점진기능재료(FGM) 판의 휨, 진동 및 좌굴 해석 (Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates)

  • 이원홍;한성천;박원태
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.1043-1049
    • /
    • 2008
  • 본 논문에서는 Navier 방법을 이용한 점진기능재료 판의 정적 응답과 고유진동수 그리고 좌굴하중을 연구하였다. S 형상 함수를 이용한 세라믹과 금속의 체적요소의 변화에 따른 점진기능재료 판의 고유치 문제를 연구하였다. 점진기능재료 판의 면내 강성, 휨 강성 및 전단 강성의 수식은 등질 요소보다 복잡한 재료의 성질들로 결합되어 있다. 본 연구의 결과를 검증하기 위해 고전적 이론에 의한 직사각형 판의 결과를 제시하였다. 적층복합 구조 및 S 형상 점진기능재료 구조의 다양한 예제를 제시하였다. 해석결과는 참고문헌의 결고들과 잘 일치함을 알 수 있었다.

설계유량을 변수로 한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate)

  • 서성진;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1726-1731
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

  • PDF