• Title/Summary/Keyword: navier's solution

Search Result 183, Processing Time 0.021 seconds

Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory

  • Zenkour, Ashraf M.;Hafed, Zahra S.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.115-134
    • /
    • 2020
  • This paper proposes a bending analysis for a functionally graded piezoelectric (FGP) plate through utilizing a two-variable shear deformation plate theory under simply-supported edge conditions. The number of unknown functions used in this theory is only four. The electric potential distribution is assumed to be a combination of a cosine function along the cartesian coordinate. Applying the analytical solutions of FGP plate by using Navier's approach and the principle of virtual work, the equilibrium equations are derived. The paper also discusses thoroughly the impact of applied electric voltage, plate's aspect ratio, thickness ratio and inhomogeneity parameter. Results are compared with the analytical solution obtained by classical plate theory, first-order-shear deformation theory, higher-order shear deformation plate theories and quasi-three-dimensional sinusoidal shear deformation plate theory.

Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory

  • Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Algarni, Ali;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • In this work, the buckling and vibrational behavior of the composite beam armed with single-walled carbon nanotubes (SW-CNT) resting on Winkler-Pasternak elastic foundation are investigated. The CNT-RC beam is modeled by a novel integral first order shear deformation theory. The current theory contains three variables and uses the shear correction factors. The equivalent properties of the CNT-RC beam are computed using the mixture rule. The equations of motion are derived and resolved by Applying the Hamilton's principle and Navier solution on the current model. The accuracy of the current model is verified by comparison studies with others models found in the literature. Also, several parametric studies and their discussions are presented.

Bending and buckling of porous multidirectional functionality graded sandwich plate

  • Lazreg, Hadji;Fabrice, Bernard;Royal, Madan;Ali, Alnujaie;Mofareh Hassan, Ghazwani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • Bending and buckling analysis of multi-directional porous functionally graded sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. The principle of virtual displacements was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The validation of the present study has been performed with those available in the literature. The composition of metal-ceramic-based FGM changes in longitudinal and transverse directions according to the power law. Different porosity laws, such as uniform distribution, unevenly and logarithmically uneven distributions were used to mimic the imperfections in the functionally graded material that were introduced during the fabrication process. Several sandwich plates schemes were studied based on the plate's symmetry and the thickness of each layer. The effects of grading parameters and porosity laws on the bending and buckling of sandwich plates were examined.

Free vibration analysis of multi-directional porous functionally graded sandwich plates

  • Guermit Mohamed Bilal Chami;Amar Kahil;Lazreg Hadji;Royal Madan;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.263-277
    • /
    • 2023
  • Free vibration analysis of multi-directional porous functionally graded (FG) sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. Hamilton's principle was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The results obtained are validated with those available in the literature. The composition of metal-ceramic-based functionally graded material (FGM) changes in longitudinal and transverse directions according to the power law. Imperfections in the functionally graded material introduced during the fabrication process were modeled with different porosity laws such as evenly, unevenly distributed, and logarithmic uneven distributions. The effect of porosity laws and geometry parameters on the natural frequency was investigated. On comparing the natural frequency of two cases for perfect and imperfect sandwich plates a reverse trend in natural frequency result was seen. The finding shows a multidirectional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters and imperfection types have been identified which will guide experimentalists and researchers in selecting fabrication routes for improving the performance of such structures.

Wave propagation along protein microtubule: Via strain gradient and orthotropic elastic model

  • Muhammad Taj;Mohammad Amien Khadimallah;Shahzad Ali Chattah;Ikram Ahmad;Sami Alghamdi;Muzamal Hussain;Rana Muhammad Akram Muntazir;Faisal Al-Thobiani;Muhammad Safeer;Muhammad Naeem Mohsin;Faisal Mehmood Butt;Zafer Iqbal
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.243-254
    • /
    • 2023
  • Microtubules in the cell are influenced by internal and external stimulation and play an important part in conveying protein substances and in carrying out medications to the intended targets. Waves are produced during these functions and in order to control the biological cell functions, it is important to know the wave velocities of microtubules. Owing to cylindrical shell shaped and mechanically elastic and orthotropic, cylindrical shell model based on gradient elasticity theory has been used. Wave velocities of the protein microtubule are carried out by considering Love's thin shell theory and Navier solution. Also the effect of size parameter and other variables on the results are investigated.

Analysis of functionally graded plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2017
  • This paper uses the four-variable refined plate theory for the free vibration analysis of functionally graded material (FGM) rectangular plates. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Equations of motion are derived from the Hamilton's principle. The closed-form solutions of functionally graded plates are obtained using Navier solution. Numerical results of the refined plate theory are presented to show the effect of the material distribution, the aspect and side-to-thickness ratio on the fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behavior of functionally graded plates.

Static analysis of simply supported porous sandwich plates

  • Taskin, Vedat;Demirhan, Pinar Aydan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.549-557
    • /
    • 2021
  • In this study, it is aimed to analyze the bending of porous sandwich plates using the four-variable shear deformation theory. The core of the sandwich plate is assumed to be functionally graded, and face sheets are assumed to be isotropic. The pore distribution of the sandwich plate is considered even and uneven type of porosity distribution. Displacement fields are defined with four variable shear deformation theory. Equilibrium equations of porous sandwich plates are derived from virtual displacement principle. An analytical solution is obtained by Navier's approach. Results are presented for uniformly and sinusoidally distributed loaded porous sandwich plates. Face sheet -core thickness ratio, porosity distribution, amount of porosity is investigated.

Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory

  • Yahea, Hussein T.;Majeed, Widad I.
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-199
    • /
    • 2021
  • A simple solution for free vibration of cross-ply and angle-ply laminated composite plates in a thermal environment is investigated using a basic trigonometric shear deformation theory. By application of trigonometric four variable plate theory, the transverse displacement is subdivided into bending and shear components, the present theory's number of unknowns and governing equations is reduced, making it easier to use. Hamilton's Principle is extended to derive the equations of motion of the plates using Navier's double trigonometric series, a closed-form solution is obtained; the primary conclusion is that simple solution is obtained with good results accuracy when compared with previously published results, and the natural frequency will differ depending on, environment temperature, thickness ratio, and lamination angle, as well as the aspect ratio of the plate.

Analysis of Rectangular Plates under Distributed Loads of Various Intensity with All Edges Built In (분포하중(分布荷重)을 받는 주변고정(周邊固定) 구형판(矩形板)의 탄성해석(彈性解析))

  • Suk-Yoon,Chang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.4
    • /
    • pp.19-24
    • /
    • 1976
  • Some method of analysis of rectangular plates under distributed load of various intensity with all edges built in are presented in. Analysis of many structures such as bottom, side shell, and deck plate of ship hull, and flat slab, deck systems of bridges is a problem of plate with continuous supports or clamped edges. When the four edges of rectangular plate is simply supported, the double fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and boundary condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a plate under distributed loads of various intensity with all edges built in is carried out by applying Navier solution and Levy's method as well as "Principle of Superposition" In discussing this problem we start with the solution of the problem for a simply supported rectangular plate and superpose on the deflection of such a plate the deflections of the plate by slopes distributed along the all edges. These slopes we adjust in such a manner as to satisfy the condition of no rotation at the boundary of the clamped plate. This method can be applied for the cases of plates under irregularly distributed loads of various intensity with two opposite edges simply supported and the other two edges clamped and all edges simply supported and this method can also be used to solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

APPLICATION OF ADOMIAN'S APPROXIMATION TO BLOOD FLOW THROUGH ARTERIES IN THE PRESENCE OF A MAGNETIC FIELD

  • Haldar, K.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.267-279
    • /
    • 2003
  • The present investigation deals with the application of Adomian's decomposition method to blood flow through a constricted artery in the presence of an external transverse magnetic field which is applied uniformly. The blood flowing through the tube is assumed to be Newtonian in character. The expressions for the two-term approximation to the solution of stream function, axial velocity component and wall shear stress are obtained in this analysis. The numerical solutions of the wall shear stress for different values of Reynold number and Hartmann number are shown graphically. The solution of this theoretical result for a particular Hart-mann number is compared with the integral method solution of Morgan and Young[17].