References
- Arshid, E., Amir, S. and Loghman, A. (2021), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 23, 3836-3877. https://doi.org/10.1177/1099636220955027.
- Arefi, M., Firouzeh, S., Bidgoli, E.M.R. and Civalek, O. (2020), "Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory", Compos. Struct., 247, 112391. https://doi.org/10.1016/j.compstruct.2020.112391.
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0.
- Cho, J.R. (2022), "Buckling analysis of sandwich plates with FG-CNTRC layers by natural element hierarchical models", J. Mech. Sci. Technol., 36, 1949-1957. https://doi.org/10.1007/s12206-022-0331-3.
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
- Garg, A., Belarbi, M.O., Tounsi, A., Li, L., Singh, A. and Mukhopadhyay, H. (2022a), "Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model", Eng. Anal. Bound. Elem., 143, 779-795. https://doi.org/10.1016/j.enganabound.2022.08.001.
- Garg, A, Chalak, H.D., Belarbi. M.O. and Zenkour, A.M. (2022b), "A parametric analysis of free vibration and bending behavior of sandwich beam containing an open-cell metal foam core", Arch. Civil Mech. Eng., 22(1), 1-15. https://doi.org/10.1007/s43452-021-00368-3.
- Garg, A., Belarbi, M.O., Li, L. and Tounsi, A. (2022c), "Bending analysis of power-law sandwich FGM beams under thermal conditions", Adv. Aircraft Spacecraft Sci., 9(3), 243-261. https://doi.org/10.12989/aas.2022.9.3.243.
- Hadji, L., Avcar, M. and Civalek, O. (2021), "An analytical solution for the free vibration of FG nanoplates", J. Brazil. Soc. Mech. Sci. Eng., 43, 418. https://doi.org/10.1007/s40430-021-03134-x.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71, 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Hohe, J. and Librescu, L. (2004), "Advances in the structural modeling of elastic sandwich panels", Mech. Adv. Mater. Struct., 11, 395-424. https://doi.org/10.1080/15376490490451561.
- Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo, R. and Mukhopadhyay, T. (2022), "Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core", Acta Mechanica Solida Sinica, 1-16. https://doi.org/10.1007/s10338-021-00295-z.
- Kumar, P. and Harsha, S.P. (2022), "Static analysis of porous core functionally graded piezoelectric (PCFGP) sandwich plate resting on the Winkler/Pasternak/Kerr foundation under thermo-electric effect", Mater. Today Commun., 32, 103929. https://doi.org/10.1016/j.mtcomm.2022.103929.
- Kumar Sah, S. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates", Compos. Struct., 279, 114795. https://doi.org/10.1016/j.compstruct.2021.114795.
- Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Marine Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
- Ma, R. and Jin, Q. (2021), "Buckling analysis of sandwich plates with functionally graded graphene reinforced composite face sheets based on a five-unknown plate theory", Mech. Adv. Mater. Struct., 1-10. https://doi.org/10.1080/15376494.2021.2000078.
- Madan, R. and Bhowmick, S. (2020), "A review on application of FGM fabricated using solid-state processes", Adv. Mater. Proc. Technol., 6, 608-619. https://doi.org/10.1080/2374068X.2020.1731153.
- Madan, R. and Bhowmick, S. (2021), "Modeling of functionally graded materials to estimate effective thermo-mechanical properties", World J. Eng., 19(3), 291-301. https://doi.org/10.1108/WJE-09-2020-0445.
- Madan, R. and Bhowmick, S. (2022), "Fabrication, microstructural characterization and finite element analysis of functionally graded Al-Al2O3 disk using powder metallurgy technique", Mater. Today Commun., 32, 103878. https://doi.org/10.1016/j.mtcomm.2022.103878.
- Naghavi, M., Sarrami-Foroushani, S. and Azhari, F. (2022), "Bending analysis of functionally graded sandwich plates using the refined finite strip method", J. Sandw. Struct. Mater., 24, 448-483. https://doi.org/10.1177/10996362211020448.
- Nam, P.V., Nguyen, D.K. and Gan, B.S. (2019), "Vibration analysis of two-directional functionally graded sandwich beams using a shear deformable finite element formulation", Adv. Technol. Innov., 4(3), 152.
- Ning, J., Sievers, D.E., Garmestani, H. and Liang, S.Y. (2020), "Analytical modeling of part porosity in metal additive manufacturing", Int. J. Mech. Sci., 172, 105428. https://doi.org/10.1016/j.ijmecsci.2020.105428.
- Onvani, D., Jafari, A. and Dehkordi, M.B. (2021), "Carrera unified formulation for bending and free vibration analysis of sandwich plate with FG-CNT faces considering the both soft and stiff cores", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2021.1983899.
- Pi, Z., Zhou, Z., Deng, Z. and Wang, S. (2021), "Bending and buckling of circular sandwich plates with a hardened core", Mater., 14, 4741. https://doi.org/10.3390/ma14164741.
- Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
- Tang, Y., Xiaofei, L. and Yang, T. (2019), "Bi-directional functionally graded beams: Asymmetric modes and nonlinear free vibration", Compos. Part B: Eng., 156(1), 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
- Tang, Y., Wang, T., Ma, Z.S. and Yang, T. (2021a), "Magneto-electro-elastic modelling and nonlinear vibration analysis of bidirectional functionally graded beams", Nonlin. Dyn., 105(3), 2195-2227. https://doi.org/10.1007/s11071-021-06656-0.
- Tang, Y., Ma, Z.S., Ding, Q. and Wang, T. (2021b), "Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis", Compos. Struct., 264, 113746. https://doi.org/10.1016/j.compstruct.2021.113746.
- Thai, S., Do, D.T.T. and Tan, T.N. (2022a), "Nonlinear bending analysis of variable thickness multi-directional functionally graded plates based on isogeometric analysis", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2022.2088909.
- Thai, S., Nguyen, V.X. and Lieu, Q.X. (2022b), "Bending and free vibration analyses of multi-directional functionally graded plates in thermal environment: A three-dimensional Isogeometric Analysis approach", Compos. Struct., 295, 115797. https://doi.org/10.1016/j.compstruct.2022.115797.
- Van Vinh, P. and Huy, L.Q. (2022), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Technol., 18, 490-508. https://doi.org/10.1016/j.dt.2021.03.006.
- Vu, T.V., Cao, H.L., Truong, G.T. and Kim, C.S. (2022), "Buckling analysis of the porous sandwich functionally graded plates resting on Pasternak foundations by Navier solution combined with a new refined quasi-3D hyperbolic shear deformation theory", Mech. Bas. Des. Struct. Mach., 1-27. https://doi.org/10.1080/15397734.2022.2038618.
- Ye, R., Zhao, N., Yang, D., Cui, J., Gaidai, O. and Ren, P. (2021), "Bending and free vibration analysis of sandwich plates with functionally graded soft core, using the new refined higher-order analysis model", J. Sandw. Struct. Mater., 23, 680-710. https://doi.org/10.1177/1099636220909763.
- Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solid. Struct., 42, 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
- Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42, 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
- Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.
- Zhen, Y., Gong, Y. and Tang, Y. (2021), "Nonlinear vibration analysis of a supercritical fluid-conveying pipe made of functionally graded material with initial curvature", Compos. Struct., 268, 113980. https://doi.org/10.1016/j.compstruct.2021.113980.