• Title/Summary/Keyword: natural river sand

Search Result 112, Processing Time 0.021 seconds

Water Quality Variation and Removal Characteristics of Poliovirus by Biological Activated Carbon (BAC) and Ozone Treatment Process in Nakdong River. (낙동강 원수의 생물활성탄 및 오존처리공정에 따른 수질 변화 및 폴리오바이러스의 제거특성)

  • Jung Eun-Young;Park Hong-Ki;Lee You-Jung;Jung Jong-moon;Jung Mi-Eun;Hong Yong-Ki;Jang Kyoung-Lib
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.696-702
    • /
    • 2005
  • Ozonation is a disinfection technique of harmful mi-crobes commonly used in the treatment of drinking water. And Biological Activated Carbon (BAC) treatment also provides numerous benefits for drinking water utilities, including removal of micro- pollutants, improved treatment processes. The multiful-stage ozonation and BAC play roles as effective methods for removing several materials in raw water. Water quality variation in Nak dong river and the removal efficiency of viruses by ozonation-BAC process were investigated on pilot scale. During the period of survey, most of water quality parameters including $NH_{4}^{+}-N$ were highly improved after passing through the BAC. The removal efficiency of poliovirus type III in water treatment process using pilot-plant,$ 99.6\% $ of viruses were removed by pre-ozonation, sedimentation and sand filteration process, $ 100\% $ were removed after in BAC filteration step. In the removal survey of viruses by ozonation, ap-proximately $ 61.1\% $ or polioviruses were inactivated by ozone of 0.4 mg/l within 5 min. and $ 100\% $ were inactivated by ozone of 0.8 mg/l over 10 min.

Geographic Distribution of Periphyton Diatom Species: A Case Study of Achnanthes convergens in Nakdong River Basin (낙동강 수계 청수성 부착조류의 공간분포 특성에 관한 연구: Achnanthes convergens 를 사례로)

  • Jo, Myung-Hee;Byun, Myeung-Sub;Sim, Jun-Seok;Jang, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.175-194
    • /
    • 2014
  • This study attempts to identify the spatial distributions of Achnanthes convergens, and elucidate the environmental factors that affect the Periphyton diatom habitat. Data in 250 points of Nakdong river basin are collected between April(primary) and September(secondary) 2012, with the National Institute of Environmental Research's support. We define "clean area" over 10% of Achnanthes convergens appearance, and the others as "non-clean areas". Spatial statistics of Kriging, Hotspot, LISA are used in this study. Results show that 1) 56 points are identified as clean areas in the primary survey, while 41 points are discovered in the following survey; 2) using water quality variables, density of turbidity(clean $101.83{\mu}s/cm$; non-clean $598.48{\mu}s/cm$) and conductivity(clean 1.95 NTU; nonclear 5.58 NTU) are five-fold lower in clean-areas; 3) Habitat and Riparian Factors in Nakdong basin illustrate that natural sand bar, diversity of velocity, sediment condition, levee material, riverside land affect Achnanthes convergens; 4) Hotspots of Achnanthes convergens are located in watersheds, including upper Andong Dam, upper Imha dam, Wi-cheon, Miryang river, Nam river and Hwang river whereas mainstream/downstream of Nakdong river and Keumho river watershed are shown as coldspots.

Hydrological Characteristics of the Naeseong Stream before the Operation of Yeongju Dam, Korea (영주댐 운영 전 내성천의 수문 특성)

  • Kim, Donggu;Lee, Chanjoo
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.3-11
    • /
    • 2017
  • In this study, change in vegetation on bars was analyzed using the data on hydrology and river morphology with on-site photographic monitoring data for the sites of interest of the Naeseong Stream during the period from March 2013 to July 2016 when the impoundment of Yeongju Dam began. The effect of flow condition on burial and removal of vegetation covered on bar surfaces was elucidated by comparison of on-site photographic monitoring data with continuous water level plotted with on the cross-section profile. In 2014 burial happened due to late flood, while July flood caused burial and removal in 2016. On the contrary vegetation increased in 2015 due to low flow without flood. Results of this study showing natural changes in vegetation will be reference to changes which is expected to be caused by dam impoundment.

Monitoring for Constructed Revetments Using Biopolymer Mixed Soil (바이오폴리머 배합토를 이용한 호안 조성과 모니터링)

  • Kim, Myounghwan;Lee, Du Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.645-653
    • /
    • 2021
  • Biopolymer is a general concept for high molecular compounds produced by living organisms. Among them, the xanthan and β-glucan, which are organic polymer mixture produced by micro-organisms, are mainly used to increase the viscosity of a substance. And diluting in water and mixing with sand or clay can increase compressive strength and shear strength. In this study, mixed soil prepared by mixing soil with xanthan and beta-glucan based biopolymers specially developed for the purpose of increasing soil strength was applied to the river bank revetment, and changes during winter were measured using ground LiDAR. As a result of analyzing winter changes in major sections using three-dimensional point cloud data obtained through ground LiDAR, there were no changes to the extent that it was difficult to confirm with the naked eye in the two sections coated with biopolymer blended soil. However, soil loss due to Rill erosion was confirmed in the natural embankment section where biopolymer blended soil was not used.

Distribution and Behavioral Characteristics of Chum Salmon (Oncorhynchus keta) in Namdae Stream, Korea (강릉 남대천에서 소상하는 연어(Chum salmon, Oncorhynchus keta) 분포와 행동 특성)

  • Kim, Beom-Sik;Jung, Yong-Woo;Kim, Woobo;Hong, Sung-Eic;Lee, Chung Il
    • Journal of Environmental Science International
    • /
    • v.31 no.10
    • /
    • pp.861-868
    • /
    • 2022
  • The Namdae stream in Gangneung-si is one of the rivers where salmon stock is mainly maintained by natural spawning rather than artificial seedlings. There are structures including weir, and fish distribution and movement characteristics can be different by these structures. In this study, we investigated the distribution and behavioral characteristics of salmon by sighting survey within 12 km immediately upstream of the river mouth between October 2021 and February 2022. As a result, salmon distributed within 9 km from rivermouth. There were more salmon in the lower reaches of Doosan weir than in the upper reaches of that. The main spawning ground for salmon was between 7-9 km from rivermouth and around the lower part of Doosan weir. Salmon behaved for spawning in the gravel-bed area and undercut slope of the mainstream, such as mating, digging the riverbed, and competition among males. Salmon moved more slowly in the gravel-bed area than sand-bed area. Doosan weir hinders the spawning migration of salmon by frequent flow changes and terraced fishway. This study provides primary information to understand the ecological changes of salmon by environmental changes in the Namdae stream.

The Distribution and Geomorphic Changes of Natural Lakes in East Coast Korea (한반도 동해안의 자연호 분포와 지형 환경 변화)

  • Lee, Min-Boo;Kim, Nam-Shin;Lee, Gwang-Ryul
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.449-460
    • /
    • 2006
  • This study aims to analyze distribution of natural lakes including lagoonal lake(lagoon) and tributary dammed lake(tributary lake) and calculate the size, morphology in order to interpret time-serial change of lakes using methodology of remote sensing images(1990s), GIS and topographic maps(1920s) in east coast of Korean Peninsular. Analysis results show that in 1990s, there are 57 natural lakes, with the total size of $75.62km^2$ over size $0.01km^2$. marine-origin lagoons are 48 with total size of $64.85km^2$, composing 85% of total natural lake, and the largest lagoon is Beonpo in Raseon City. Tributary lakes have been formed by damming of tributary channels by fluvial sand bars from main stream, located nearby at coastal zone, similar to lagoon sites. Large tributary lake, Jangyeonho, is developed in lava plateau dissection valley of Eorang Gun, Hamnam Province. There are more distributed at Duman River mouth$\sim$Cheongjin City, Heungnam City$\sim$Hodo Peninsular and Anbyeon Gun$\sim$Gangreung City. Geomorphometrically, correlation of size to circumference is very high, but correlation of size to shape irregularity is very low. The direction of lagoonal coast, NW-SE and NE-SW are predominated due to direction of tectonic structure and longshore currents. The length of the river into lake are generally short, maximum under 15km, and lake size is smaller, degree of size decreasing is higher. Geomorphic patterns of the lake location are classified as coast-hill range, coastal plain, coastal plain-channel valley, coastal plain-hill range and channel valley-hill range. During from 1920s to 1990s, change with lake size decreasing is highest at coastal plain-channel valley, next is coastal plain. Causes of the size decreasing are fluvial deposition from upper rivers and human impacts such as reclamation.

  • PDF

Correlation Analysis of Signal to Noise Ratio (SNR) and Suspended Sediment Concentration (SSC) in Laboratory Conditions (실험수로에서 신호대잡음비와 부유사농도의 상관관계 분석)

  • Seo, Kanghyeon;Kim, Dongsu;Son, Geunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.775-786
    • /
    • 2017
  • Monitoring sediment flux is crucial especially for maintaining river systems to understand morphological behaviors. Recently, hydroacoustic backscatter (or SNR) as a surrogate to empirically estimate suspended sediment concentration has been increasingly highlighted for more efficient acquisition of sediment dataset, which is difficult throughout direct sediment sampling. However, relevant contemporary researches have focused on wide range solution applicable for large natural rivers where H-ADCPs with relatively low acoustic frequency have been widely utilized to seamlessly measure streamflow discharge. In this regard, this study aimed at investigating hydroacoustical characteristics based on a very recently released H-ADCP (SonTek SL-3000) with high acoustic frequency of 3 MHz in order to capitalize its capacity to be applied for suspended sediment monitoring in laboratory conditions. SL-3000 was tested in a laboratory flume to collect SNR in conjunction with LISST-100X for actual sediment concentration and particle distribution in both sand and silt sediment injection in various amount. Conventional algorithms to correct signal attenuations for water and sediment were carefully tested to validate whether they can be applied for SL-3000. As result of analyzing the SNR-SSC correlation trand, through further study in the future, it is confirmed that SSC can be observed indirectly by using the SNR.

Landscape Design Proposal for Seoul Yeouido Riverside Park (여의도 한강공원 조성계획)

  • Kim, Do-Kyong;Choi, Won-Man;Hong, Hyoung-Soon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.2
    • /
    • pp.14-23
    • /
    • 2008
  • Ran Gang is a huge, attractive river which meanders through Seoul, the capital of South Korea. However, during the modernization of Seoul, the river gradually lost its natural beauty and healthy condition. Han Gang Renaissance is a project to upgrade the look of the Seoul waterfront, by overcoming this disaster and reorganizing the surroundings of Han Gang. This research articulates the design strategies and description of the prizewinning work of the International Design Competition for Yeouido Riverside Park that was linked to the Han Gang Renaissance Project. There are three key points that basically speak to the identity of the new waterfront, Yeouido Riverside Park. First, the current day Yeouido was recreated as an artificial island through the rapid expansion of the city and the initiation of the shore protection works. However, because it is the only island still remaining that shows the history of Han Gang, the park was designed to be the place which preserves the lyric of sand island and the emotional memory of riverside. Secondly, among the six districts of the Han Gang Renaissance Project, the two districts that are facing each other, Yongsan and Yeouido, are the central areas promoting international finance and business. Despite Yongsan's complete urban image, the exquisite harmony of pastoral scenes and skyscrapers of the Yeouido waterfront is presented to develop an active mutual relation with Yongsan. Lastly, this design scheme re-establishes the relationship between this competition's site, Yeouido Riverside Park, and a neighboring site, Yeouido Park.

Effect of Typhoon 'Rusa' on the Natural Yeon-gok Stream and Coastal Ecosystem in the Yeong-Dong Province (영동지방 자연형 하천(강릉 연곡천)과 인근 연안 생태계에 대한 태풍 루사의 영향)

  • Yoon Yi-Yong;Kim Hung-sub
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2004
  • The yeongok stream originates at the natural park, Mt. O-dae and flows to the East Sea of korea, normally maintaining I or II grade of water quality and its average water flux is 352,100 ㎥/d. However, the typhoon 'Rusa', which occured on 31 August 2002, changed its watercourse and configuration, and the ecosystem was deeply damaged. Moreover, the hydrological characteristics were once more transformed, and the ecosystem was secondarily damaged during repair-work of destroyed bridges and elevations. After the flood disaster, the species diversity diminished 17% for attached diatom and 44% for aquatic animals. However, the earth and sand, dug from river bed during intensive repair-work throughout the entire stream, made diversity drop to 32% for the diatom and the aquatic animals were wiped out. Especially, fishes were totally destroyed except for some species such as Moroco oxycephalus in the upper stream. The yeongok stream has little contamination source and short water residence time due to the short length and rapid slope, and consequently a temporary deterioration of water quality caused by repair-work may be rapidly recovered, but it needs a long time to restore the damaged ecosystem.

  • PDF

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.