DOI QR코드

DOI QR Code

Water Quality Variation and Removal Characteristics of Poliovirus by Biological Activated Carbon (BAC) and Ozone Treatment Process in Nakdong River.

낙동강 원수의 생물활성탄 및 오존처리공정에 따른 수질 변화 및 폴리오바이러스의 제거특성

  • Jung Eun-Young (Division of Biological Sciences, College of Natural Science, Busan National University) ;
  • Park Hong-Ki (Depart of Biotechnology, Pukyong Naional University) ;
  • Lee You-Jung (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Jung Jong-moon (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Jung Mi-Eun (Water) ;
  • Hong Yong-Ki (Depart of Biotechnology, Pukyong Naional University) ;
  • Jang Kyoung-Lib (Division of Biological Sciences, College of Natural Science, Busan National University)
  • 정은영 (부산대학교 미생물학과) ;
  • 박홍기 (부경대학교 생물공학과) ;
  • 이유정 (부산광역시 상수도사업본부 수질연구소) ;
  • 정종문 (부산광역시 상수도사업본부 수질연구소) ;
  • 정미은 (부산광역시 상수도사업본부 수질연구소) ;
  • 홍용기 (부경대학교 생물공학과) ;
  • 장경립 (부산대학교 미생물학과)
  • Published : 2005.10.01

Abstract

Ozonation is a disinfection technique of harmful mi-crobes commonly used in the treatment of drinking water. And Biological Activated Carbon (BAC) treatment also provides numerous benefits for drinking water utilities, including removal of micro- pollutants, improved treatment processes. The multiful-stage ozonation and BAC play roles as effective methods for removing several materials in raw water. Water quality variation in Nak dong river and the removal efficiency of viruses by ozonation-BAC process were investigated on pilot scale. During the period of survey, most of water quality parameters including $NH_{4}^{+}-N$ were highly improved after passing through the BAC. The removal efficiency of poliovirus type III in water treatment process using pilot-plant,$ 99.6\% $ of viruses were removed by pre-ozonation, sedimentation and sand filteration process, $ 100\% $ were removed after in BAC filteration step. In the removal survey of viruses by ozonation, ap-proximately $ 61.1\% $ or polioviruses were inactivated by ozone of 0.4 mg/l within 5 min. and $ 100\% $ were inactivated by ozone of 0.8 mg/l over 10 min.

오존처리는 음용수중의 유해한 미생물을 소독하는 처리기술로 주로 이용되고 있으며, 생물활성탄 처리기술 역시 오염물질 제거를 포함한 음용수 제조과정에 여러 가지 이점을 제공한다. 이글의 병행처리는 원수중의 여러 물질을 제거하는데 효과적인 공정으로 간주되고 있다. 본 연구에서는 낙동강 하류의 매리취수장 원수를 사용하여 생물활성탄 정수처리공정 및 오존에 의한 수질 변화와 함께 폴리오바이러스 제거 효율을 조사하였다. 수질인자들은 BAC 여과를 거치면서 $NH^{+}_{4}-N$등을 포함한 모든 항목들은 거의 제거되는 것으로 나타났다. Pilot-plant를 이용한 정수처리공정별 폴리오바이러스 제거실험에서는 전오존 접촉에 의해 $96.8\%$, 침전단계에서$99.3\%$, 여과단계에서 $99.6\%$의 바이러스가 제거되었으며, 후오존을 거친 BAC 여과수 시료에서는 세포배양법과 ICC-PCR 방법에서 바이러스가 $100\%$ 제거되어짐을 확인할 수 있었다. 오존농도에 의한 폴리오바이러스 제거실험 결과 0.4mg/1에서 5분간 접촉되었을 때는 약 $61.1\%$ 이상이, 0.8mg/1에서 10분 이상 접촉시킨 후에는 바이러스의 $100\% $가 불활성화 되어졌음을 알 수 있었다.

Keywords

References

  1. APHA. 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed., APHA-AWWA-WPCF, New York
  2. Cho, Y. H., C. H. Lee. 2002. Detection of poliovirus in water by cell culture and PCR methods. Kay. J. Microbial. 38, 198-204
  3. EPA. 1996. ICR Microbial Laboratory Manual
  4. EPA. 1991. Guidance Manual for Compliance with the Filteration and Disinfection Re quirements for Public Water Systems Using Surface Water Sources
  5. EPA. 1998. Compliance Dates for the Stage 1 D/DBP Rule
  6. EPA. 1995. Information Collection Requirements Rule Protozoa and Enteric Virus Sample Collection Procedure
  7. Grabow, W. O. K., P. Coubrough, C. HiIner and B. W. Bateman. 1984. Inactivation of hepatitis A virus, other enteric viruses and indicator organism in water by chlorine. Appl. Environ. Microbiol. 46, 619-624
  8. Harakeh, M. and M. J. Butler 1985. Factors influencing the ozone inactivation of enteric Viruses in effluent. Ozone : Science and Engineering, 6, 235-243
  9. Jung, Y. S. 2000. National survey research and significance from ICR method. Forum collection of waterborne viral analysis. 21-39
  10. Jung, H. M., J. Y. Yoon. 1994. The Opinion with Microbiological Standard of American Drinking Water. J. KSWQ. 10, 62-71
  11. Langlais, B. Ozone in water treatment: Application and Engineering. pp. 218-237. Lewis publishers INC
  12. Maarchais V. A., B. H. Robertson and V. Aubineau. 1995. Direct sequencing of hepatitis A virus strains isolated during an epidemic in France. Appl. Environ. Microbiol. 61, 3977-3980
  13. Park, J. Y. 1994. Drinking Water Microbiology. pp. 385-396, Chemical Engineering Research Corporation, Seoul
  14. Park, H. K., E. Y. Jung, Y. J. Lee, J. M. Jung, D. H. Choi, H. J. Son, K. W. Kwon, and Y. K. Hong. 2003. Distribution of waterborne enteric viruses in raw water and tap water in Busan metropolitan city. Kor. J. of Life Science. 13, 197-205 https://doi.org/10.5352/JLS.2003.13.2.197
  15. Park, H. K., C. M. Chung, J. R. Bahk and Y. K. Hong. 1999. The relationship between phytoplankton productivity and water quality in downstream of Nakdong river. J. of the Korean Environmental Sciences Society. 8, 101-106
  16. Reynolds K. A., C. P. Gerba and I. L. Pepper. 1996. Detection of infectious enteroviruses by an integrated cell culture PCR procedure. Appl. Environ. Microbiol. 62, 1424-1427
  17. Robeck, G., N. A Oarke and K. A. Dostal. 1962. Effectiveness of water reatment processes for virus removal. Journal American waterworks. 54, 1275-1290
  18. Ryu, D. C. 1997. Optimization of water treatment using ozone and granular activated carbon. pp. 22-25, Thesis for the Degree of Doctor, Department of Environmental Engineering, Graduate School, Pukyong National University
  19. 日本水道協會. 1985 日本上水道試驗方法. pp. 630-637
  20. 長澤. 1990. 粒狀洁性炭表層のおける微生物の動向. 第41回 全國水道硏究發表會 proceedings. pp. 1-3