• Title/Summary/Keyword: natural output

Search Result 474, Processing Time 0.03 seconds

Electronically Tunable Current-Mode Second-Order Multifunctional Filter Using FTFNs and Dual-Output OTAs

  • Tangsrirat, Worapong;Anuntahirunrat, Kongsak;Surakampontorn, Wanlop
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.99.2-99
    • /
    • 2001
  • An electronically tunable current-mode second-order multifunctional filter is described in this paper. The proposed filter consists of two four-terminal floating nullors (FTFNs), two dual-output OTAs and two grounded capacitors. The circuit can simultaneously realize the lowpass, bandpass and highpass current transfer functions from the same configuration without changing the circuit configuration and elements. The natural angular frequency we and the parameter wo/Q can be orthogonally controlled through adjusting the transconductance gain of OTA. PSPICE simulation results are employed to confirm the circuit performance.

  • PDF

Dynamic Characteristics of Tuned Liquid Column Dampers Using Shaking Table Test (진동대실험에 의한 동조액체기둥감쇠기의 동적특성)

  • Min, Kyung-Won;Park, Eun-Churn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.620-627
    • /
    • 2009
  • Shaking table test was carried out to obtain dynamic characteristics of TLCDs with uniform and non-uniform sections for both horizontal and vertical tubes. The input to the table is harmonic acceleration with constant magnitude. The output is horizontal dynamic force which is measured by load cell installed below the TLCD. Transfer functions are experimentally obtained using the ratio of input and output. Natural frequency, the most important design factor, is compared to that by theoretical equation for TLCDs with five different water levels. System identification process is performed for experimentally obtained transfer functions to find the dynamic characteristics of head loss coefficient and effective mass of TLCDs. It is found that their magnitudes are larger for a TLCD with non-uniform section than with uniform section and natural frequencies are close to theoretical ones.

A Study on the Combustion Performance by the Improvement of In Cylinder Flow Motion in the Natural Gas Engine (실린더내 흡기유동개선이 천연가스엔진의 연소성능에 미치는 영향 연구)

  • Jeong, D.S.;Suh, S.W.;Oh, S.M.;Uhm, J.H.;Chang, Y.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.90-96
    • /
    • 1995
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns is analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF

Design of Multi-Input Multi-Output Positive Position feedback Controller based on Block-Inverse Technique (블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계)

  • Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.508-514
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi input and multi output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments..

  • PDF

Design of Multi-input Multi-output Positive Position Feedback Controller Based on Block-inverse Technique (블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계)

  • Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1037-1044
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi-input and multi-output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block-inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments.

Electrical Characteristics of c-Si PV Module for the Spread of Natural Light Spectrum (자연광 스펙트럼 분포에 의한 단결정 PV 모듈의 전기적 특성)

  • Hong, Jong-Kyuong;Kang, Gi-Hwan;Park, Chi-Hong;Jung, Tae-Hee;Ryu, Se-Hwan;L, Waithiru;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.193-198
    • /
    • 2009
  • Recently, characteristic research by the changes in the spectrum, one of the factors that influence analysis of maximum output power of PV module, has been studied. In this paper, a one-day intensity of solar irradiation, change of spectrums with time and electrical output for spectrums are analyzed. As a result, blue-rich wavelength compared with red-rich wavelength has large variation of solar irradiance with time, so we recognized that change of solar irradiance is dominated by variation of blue~rich wavelength. Also in same intensity of solar irradiance, electrical output in blue-rich wavelength was 3-8 % higher than one in red-rich wavelength.

The effects of asymmetry parameter in a two-mode laser output (2모드 레이저의 출력에서 비대칭 매개변수의 영향)

  • Park, Goo-Dong;Ha, Yang;Kim, Tae-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.52-57
    • /
    • 1997
  • We report an investigation of the statistical fluctuations of the two-mode laser output as the asymmetry parameter is varied. The above results relate to computer solutions of the coupled Langevin equations both with and without pumping fluctuations. We find that as the asymmetry parameter is changed positively, the mean intensity of one mode is increased because the normalized intensity auto-correlation is decreased so that the natural dwell time is lengthen. The laser output does respond to a sinusoidally injected asymmetry parameter for small pump parameter.

  • PDF

Wind Power Interval Prediction Based on Improved PSO and BP Neural Network

  • Wang, Jidong;Fang, Kaijie;Pang, Wenjie;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.989-995
    • /
    • 2017
  • As is known to all that the output of wind power generation has a character of randomness and volatility because of the influence of natural environment conditions. At present, the research of wind power prediction mainly focuses on point forecasting, which can hardly describe its uncertainty, leading to the fact that its application in practice is low. In this paper, a wind power range prediction model based on the multiple output property of BP neural network is built, and the optimization criterion considering the information of predicted intervals is proposed. Then, improved Particle Swarm Optimization (PSO) algorithm is used to optimize the model. The simulation results of a practical example show that the proposed wind power range prediction model can effectively forecast the output power interval, and provide power grid dispatcher with decision.

Comparison of Different Deep Learning Optimizers for Modeling Photovoltaic Power

  • Poudel, Prasis;Bae, Sang Hyun;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.204-208
    • /
    • 2018
  • Comparison of different optimizer performance in photovoltaic power modeling using artificial neural deep learning techniques is described in this paper. Six different deep learning optimizers are tested for Long-Short-Term Memory networks in this study. The optimizers are namely Adam, Stochastic Gradient Descent, Root Mean Square Propagation, Adaptive Gradient, and some variants such as Adamax and Nadam. For comparing the optimization techniques, high and low fluctuated photovoltaic power output are examined and the power output is real data obtained from the site at Mokpo university. Using Python Keras version, we have developed the prediction program for the performance evaluation of the optimizations. The prediction error results of each optimizer in both high and low power cases shows that the Adam has better performance compared to the other optimizers.

The Economic Effect of Industrial Investment on North Korea Energy and Natural Gas (북한 에너지산업과 천연가스분야 투자에 따른 경제적 파급효과)

  • Kim, Hyoung-Tae;Chae, Jung-Min;Cho, Young-Ah;Kim, Jin-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.7-14
    • /
    • 2016
  • The economic crisis in North Korea has reduced its capacity to invest in the energy industries. The country is going through a vicious cycle of decreased investment in the energy industries and reduced energy production. This suggests that the energy industries would come to the top priority of investment once the economy improves. This paper calculated the economic ripple effect of the investment on North and South Korean economies based on the assumption that 390 billion won was invested in the construction of a natural gas combined-cycle power plant in Gaesong Industrial Complex. In order to analyze the economic ripple effect of the investment on North Korean economy, we constructed the inter-industry relation table of North Korea for year 2014 and used the input-output model. The ripple effect of the investment in the natural gas industry turned out to be 1.012 billion dollars. In order to analyze the effect of the investment on South Korean economy, we constructed the inter-industry relation table of South Korea for year 2013 and used the demand-driven model for inter-industry analysis. As a result, production, added-value and employment inducement coefficients of the investment in the natural gas industry were calculated as 2.02073, 0.62697 and 8.99409 respectively.