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Abstract

Comparison of different optimizer performance in photovoltaic power modeling using artificial neural deep learning

techniques is described in this paper. Six different deep learning optimizers are tested for Long-Short-Term Memory

networks in this study. The optimizers are namely Adam, Stochastic Gradient Descent, Root Mean Square Propagation,

Adaptive Gradient, and some variants such as Adamax and Nadam. For comparing the optimization techniques, high and

low fluctuated photovoltaic power output are examined and the power output is real data obtained from the site at Mokpo

university. Using Python Keras version, we have developed the prediction program for the performance evaluation of the

optimizations. The prediction error results of each optimizer in both high and low power cases shows that the Adam has

better performance compared to the other optimizers.

Keywords: Deep Learning, Deep Learning Optimizer, Prediction, Photovoltaic Power Output, Long Short-Term Memory,
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1. Introduction

Currently, energy is becoming an emergency problem

for economic development in every country in the

world. Consumption of traditional fossil fuels such as

gasoline and coal caused massive negative effects on

the environment, which includes air pollution as well as

a greenhouse effect. In order to solve this problem, an

enormous application of renewable energy is crucial.

Among the various renewable energy technologies,

solar energy is most promising, almost limitless, non-

pollutant and available free of cost. Massive amount

electrical energy could harvest from solar energy using

photovoltaic (PV) systems. However, the power output

of the PV system is intermittent and non-stationary ran-

dom process because of the variability of solar irradia-

tion and weather characteristics.

Solar PV power system is an important energy source

in Microgrid (MG) system and controlling PV system

is needed for optimal performance achievement for

MG. Therefore, the modeling and forecasting of a

power output of the PV system have been considered

as an interesting research topic for MG.

Recently, artificial intelligence based forecasting

techniques have been used successfully in many areas

such as finance and banking-insurance[1] for analysis of

exchange rate evaluation, stock price forecasting, indus-

trial and agricultural production, and medical sectors
[2,3]. Numerous forecasting modeling techniques are also

applied in PV power output: artificial neural network

(ANN) based model[4], time series model[5], and time

trend extrapolation model[6]. Among these models, the

ANN based modeling technique has more accurate pre-

diction results compared to other modeling methods.

However, the ANN based modeling technique is com-

plex and requires huge training data samples.

In this paper, long short-term memory (LSTM) net-

works[7] have been tested with different optimizers to

model PV power output. The purpose of this work is to

examine the numerous optimization in deep learning for

PV modeling technique and find the best model, which

can be deployed in the campus MG management system.

This paper is organized as follows, PV modeling

approach using different optimizers in LSTM networks
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is described in section 2 and prediction results obtained

from these optimizers are presented in section 3.

Finally, a conclusion is stated in section 4.

2. PV Modeling Using Different Optimizers 
of LSTM Deep Learning Network

2.1. Long Short-Term Memory Network

LSTM network is based on recurrent neural networks

(RNN) and proven to be one of the most powerful RNN

models for time series forecasting and other related

applications[8,9]. The LSTM networks can be con-

structed in such a way that they are able to remember

long-term relationships in the data. The LSTM net-

works have been shown to model temporal sequences

and their long-range dependencies more accurately than

the original RNN model[8]. LSTM networks are applied

on sequential data as input, which without loss of gen-

erality means data samples that change over time. Input

into LSTM networks involves a so-called sequence

length parameter (i.e., the number of time steps) that is

defined by the sample values over a finite time win-

dow[10]. Thus, the sequence length is how we represent

the change in the input vector over time; this is the time

series aspect to the input data. The architecture of

LSTM networks is generally composed of units called

memory blocks. The memory block contains memory

cells and three controlling gates, i.e., the input gate, for-

get gate, and output gate.

The memory cell is designed for preserving the

knowledge of the previous step with self-connections

that can store (remember) the temporal state of the net-

work while the gates control the update and flow direc-

tion of information. The structure of LSTM used is

shown in Fig. 1.

The LSTM shown in above fig has inputted PV

power data Xt, the LSTM updates the memory cell with

the help of three gates it, ft and ot, and give an output

Yt where t represents the time period[11].

2.2. Optimization Algorithms

The internal parameters of a deep learning model play

a vital role in efficiently and effectively training a model

and produce accurate results. This is why we use vari-

ous optimization strategies and algorithms to update and

calculate appropriate and optimum values of such

model’s parameters which influence our model’s learn-

ing process and the output of the PV model.

Types of Optimizations Algorithms

1) Stochastic Gradient Descent (SGD)

SGD updates deep learning model parameters

(theta(θ)) in the negative direction of the gradient (g) by

taking a subset or a mini-batch of data size (n)

gradient (g) = (f (x(i); θ), y(i)) (1)

(2)

In the equations 1 and 2, the deep learning model is

represented by (x(i); θ), where x(i) are the training data

and y(i) are the training labels, the gradient of the loss

L is computed with respect to the model parameters

theta. Learning rate εk determines the size of the step

that the SGD algorithms takes along the gradient.

2) Adaptive Gradient Algorithm (AdaGrad)

AdaGrad is an adaptive method for setting the learn-

ing rate i.e. it maintains a per-parameter learning rate

that improves performance on problems with sparse

gradients.

3) Root Mean Square Propagation (RMSProp)

RMSProp maintains per-parameters learning rate that

is adapted based on the averages of recent magnitudes

of the gradients for the weights values like how quickly

it is changing.

1
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Fig. 1. LSTM learning structure.
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4) Adam and variants (Adamax & Nadam)

Adam is a combination of RMSProp and momentum,

the update looks like RMSProp expect that a smooth

version of the gradient is used instead of the raw sto-

chastic gradient, the Adam update also includes a bias

correction mechanism[12].

3. Prediction Results

The input data for the LSTM model is PV power out-

put from the PV system installed at Mokpo National

University rooftop in Korea. Initially, we examine the

whole March month PV system generated power data

in order to find the similar power generation. From this

study, we found march 1st and 6th have similar power

generation which is highly fluctuating in nature and

march 11th and 24th have a similar smooth power gen-

eration, as shown in Fig. 2 and 3 respectively.

The LSTM network having a structure of three hid-

den layers, first hidden layer nodes 200, second hidden

layer with 100 nodes and third 50 nodes was imple-

mented using Python Keras Library and was trained

with the different optimizers. We set all the parameters

for these optimizers as a default value. 

Firstly, we used high fluctuating PV power data of

March 1st as a training dataset, and the March 6th PV

data as a test dataset in LSTM network with different

optimizers. Similarly, low fluctuating PV power data of

March 11th as a training dataset, and the March 24th PV

data as a test dataset. The Fig below 4 and 5 shows the

value of the training loss vs iterations of high fluctuating

PV data and low fluctuating PV data respectively with

different optimizers.

From the training loss versus epochs plot, we can see

that in both cases Adam optimizer produce the lowest

training loss with highly converged then the other opti-

mizers.

In our experimental study, we used the root mean

square error (RMSE) measures technique to evaluate

Fig. 2. High fluctuation PV output cases.

Fig. 3. Low fluctuation PV output cases.

Fig. 4. Training losses for the high fluc. case

Fig. 5. Training losses for the low fluc. case
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the forecasting accuracy, as follows:

(3)

Where, y(i) and  are the target and forecast (out-

comes) values, respectively, of PV power data with a

total N observations.

To evaluate the forecasting accuracy of different opti-

mizers used in LSTM network, RMSE of all the opti-

mizers have been evaluated in both cases. At 300

epochs for the training process, the training loss values

are converged and the training is stopped and trained

model is used for the prediction. The RMSE values

obtained from different optimizers during the training

and prediction of both fluctuating and low fluctuating

cases are shown in Fig. 6 and 7 respectively.

The results in Fig. 6 and 7 demonstrate the effective-

ness of Adam optimizers in improving forecasting per-

formance in terms of RMSE against the other

optimizers in both high and low fluctuation cases of PV

power Data. In high fluctuating case of PV data, Adam

optimizer has minimum error values of 4.02 RMSE for

the training and 21.8 RMSE for the prediction. Simi-

larly, in low fluctuating PV data, Adam optimizer has

the lowest error values 0.57 in training RMSE and 1.18

prediction RMSE. 

In the high fluctuation PV output case, all optimizer

has similar performance results. Due to the sudden PV

output changes, the LSTM structure is even hard to find

the good results. 

4. Conclusion

In this paper, different optimizers namely, Adam,

SGD, RMSProp, AdaGrad, Admax, and Nadam have

been used to model PV power output in LSTM net-

work. First, we trained each optimizer in both high fluc-

tuating and low fluctuating PV power data to observe

the training loss value and used in prediction phase. In

both cases, Adam optimizer produces the lowest train-

ing loss with highly converged rates. Training and pre-

diction results in both cases also show that Adam

optimizers have the better performance compared to the

other optimizers in terms of trained and predicted loss

values via RMSE. 

Also these results imply that the high fluctuation PV

output due to the cloud movement with some higher

speed is eventually hard to model accurately using any

time-series or deep neural network models. The cloud

movement is very natural event happenings in some

local region and area only. Thus it is hard to imply the

movement in real-time modeling methods. To model

this cloud movement, we suggest that using multiple

irradiation sensors position within the PV plants at some

distances. This is the cheapest modeling method to

predict very sudden and random the nature events. 
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Fig. 6. RMSEs for the high fluctuation case.

Fig. 7. RMSEs for the low fluctuation case.
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