• Title/Summary/Keyword: natural ecosystem

Search Result 935, Processing Time 0.024 seconds

Hydro-ecological characterizations in groundwater dependent ecosystem (지하수 종속 생태환경에서 수문-생태학적 특성 조사 및 분석)

  • Kim, Hee-Jung;Hyun, Yun-Jung;Lee, Kang-Kun
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The groundwater dependent ecosystem associated with a natural stream is the area where mixing and exchange of surface water and groundwater occurs due to large chemical and hydraulic gradients. Surface-groundwater interactions play an important role in biogeochemical processes in groundwater dependent ecosystems and make this area a hydro-ecological hot spot. The objective of this study is to characterize the groundwater dependent ecosystem in a natural stream where nitrate contamination of stream water is observed by means of hydrogeological, chemical, and biological methods. In this study, vertical flow exchange(hyporheic flow) rates between stream and groundwater were estimated based on vertical hydraulic gradients measured at mini-piezometers of various depths. To investigate the biological natural attenuation potential, biological analyses using polymerase chain reaction(PCR)-cloning methods were performed in this study. Results show that the veritical hyporheic water fluxes affect nitrate concentrations and bacterial densities in groundwater dependent ecosystems to some degree. Also, denitrifying bacteria were identified in hyporheic soils, which may support the biodegradation potential of the groundwater dependent ecosystems under certain conditions.

  • PDF

Optimal Monitoring Frequency Estimation Using Confidence Intervals for the Temporal Model of a Zooplankton Species Number Based on Operational Taxonomic Units at the Tongyoung Marine Science Station

  • Cho, Hong-Yeon;Kim, Sung;Lee, Youn-Ho;Jung, Gila;Kim, Choong-Gon;Jeong, Dageum;Lee, Yucheol;Kang, Mee-Hye;Kim, Hana;Choi, Hae-Young;Oh, Jina;Myong, Jung-Goo;Choi, Hee-Jung
    • Ocean and Polar Research
    • /
    • v.39 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • Temporal changes in the number of zooplankton species are important information for understanding basic characteristics and species diversity in marine ecosystems. The aim of the present study was to estimate the optimal monitoring frequency (OMF) to guarantee and predict the minimum number of species occurrences for studies concerning marine ecosystems. The OMF is estimated using the temporal number of zooplankton species through bi-weekly monitoring of zooplankton species data according to operational taxonomic units in the Tongyoung coastal sea. The optimal model comprises two terms, a constant (optimal mean) and a cosine function with a one-year period. The confidence interval (CI) range of the model with monitoring frequency was estimated using a bootstrap method. The CI range was used as a reference to estimate the optimal monitoring frequency. In general, the minimum monitoring frequency (numbers per year) directly depends on the target (acceptable) estimation error. When the acceptable error (range of the CI) increases, the monitoring frequency decreases because the large acceptable error signals a rough estimation. If the acceptable error (unit: number value) of the number of the zooplankton species is set to 3, the minimum monitoring frequency (times per year) is 24. The residual distribution of the model followed a normal distribution. This model can be applied for the estimation of the minimal monitoring frequency that satisfies the target error bounds, as this model provides an estimation of the error of the zooplankton species numbers with monitoring frequencies.

Environmental Impact Assessment Using Vegetation Index (식생지수를 이용한 환경영향평가)

  • Han, Eui-Jung;Kim, Myung-Jin;Lee, Jae-Woon;Kim, Sang-Hun;Hong, Jun-Suk;Sea, Chang-Wan
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.1
    • /
    • pp.47-54
    • /
    • 1997
  • Vegetation Index(VI) derived from remote sensing data is used to assess ecosystem factor in Environmental Impact Assessment(EIA) process. Ecosystem factor has been prepared by Degree of Green Naturality(DGN) mainly in Environmental Impact Statements. But DGN has room for improvement of assessing actual ecosystem situation. The objectives of this study are to define the relationship between field measure DGN and VI, and to develop methodologies to use VI for assessing the status and conditions of natural ecosystem. For verification of DGN and VI, 35 sites using global positioning system are selected and reviewed. Correlation coefficients of DGN and VI shows highly as 0.69. Also VI in EIA found it can be applied to assess ecosystem. It concluded that VI as well as DGN can be applied to assess ecosystem newly and largescale.

  • PDF

Floral Changes During Three Years After Cheonggyecheon Restoration (청계천 복원 후 3년간 식물상 변화)

  • Kim, Hyeong-Guk;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.107-115
    • /
    • 2010
  • This study was surveyed to identify changes of flora during three years after restoration in Cheonggyecheon stream. There are four sections in Cheonggyecheon. One and two sections are upper streams and three and four sections are down streams. It was surveyed 328 species in 2006. In 2007 and 2008, 446 and 444 species were found, respectively. This result shows that Cheonggyecheon is unstable initial condition in restored stream ecosystem. Naturalized species were 58 species in 2006 and it was respectively 61 and 63 species in 2007 and 2008. Hazard species of ecosystem were three common species during survey period. In appearance of flora per section, three and four sections constituted by natural sites such as point bars, wide flood plains, riffles and ponds, marshes, etc. were surveyed more species than one and two constructed by concrete materials and narrow flow channel. Recently, as time goes by, introduced species are being increased. And succession has mainly been progressed by one year or binary herbs and perennial herbs. Compared with other restored streams, Cheonggyecheon showed more flora than Yangjaecheon and Anyangcheon. It is judged owing to length of surveyed site, various planted species and area of inhabitation space. To manage restored stream ecosystem, monitoring is essential. Further, because change of vegetation after restoration in Cheonggyecheon is very important, continuous monitoring about Flora and Naturalized species and Hazard species of ecosystem is also very important.

Taiwan Agricultural Ecosystem Plant Investigation Methodology for Evaluating Agricultural Ecosystem Services

  • Tsai, Jenn-Kuo;Chen, Chi-Ling
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • Farming practices that balance environmental friendliness with biodiversity are increasingly valuable. Wild plants on farmlands compete for nutrients with crops and create a crucial microhabitat and resources for animals such as natural enemies. Investigating farmlands and their surrounding plants with limited human and material resources has become an essential aspect of evaluating the agricultural ecosystem services. This study investigated plants in six agricultural long-term ecological research sites in Taiwan from 2017 to 2020 to determine the ideal season for investigation. Cluster analysis was performed to group habitats with similar plant composition, and the species-area curves of the clusters in each season were created. The results indicated that the agricultural ecosystem could be divided into farmlands, banks, orchards, and tea gardens. The habitats were divided into farmland, bank, Chia-Yi orchard, Gu-Keng orchard, and tea garden clusters. Ground plant cover can be investigated all year with at least 18 quadrats. However, if human and material resources are limited, 10 quadrats should be the minimum for farmlands in autumn and for the other microhabitats in spring. The minimum number of quadrats is 10 for banks, 17 for orchards, and 9 for tea gardens.

Spatiotemporal evolution and influencing factors of ecosystem service value in the Sanjiangyuan nature reserve nature reserve

  • Liu, Hao;Shu, Chang;Sun, Lihui
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.319-336
    • /
    • 2022
  • Evaluating the temporal and spatial changes in the ecosystem service value (ESV) of the Sanjiangyuan Nature Reserve is important for understanding the impact of human activities on natural ecosystem and guiding ecosystem restoration and environmental pollution control. In this study, remotely sensed land-cover data and the equivalent factor method were used to analyze the spatiotemporal evolution characteristics of the ESV in Sanjiangyuan Nature Reserve from 1992 to 2015, and regression analysis was employed to determine the factors driving changes in the ESV. The results show that grassland was the main type of ecosystem in the study area, and the transformation of grassland into bare areas was the primary change in land cover. Additionally, the ESV in the study area first decreased and then increased, with an annual growth rate of 0.69%. The ESV mainly increased in the north of the Yellow River's source area, and mainly decreased in the northwest of the Yangtze River's source area. Finally, the gross output value of agriculture, urbanization rate and proportion of secondary industry were found to be the main factors driving the ESV in the study area.

Study of Formation and Development of Oxygen Deficient Water Mass, Using Ecosystem Model in Jinhae, Masan Bay (생태계 모델을 이용한 진해·마산만에서의 빈산소수괴의 형성 및 발달에 관한 연구)

  • Kim, Yeon-Joong;Kim, Myoung-Kyu;Yoon, Jung-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.41-50
    • /
    • 2010
  • This study established a 3D ecosystem model composed of stratification considering the topographic heat accumulation effect and river outflow, and then applied this model to Jinhae, Masan Bay. Specifically, it reenacted the formation and developmental process of ODW according to the stratification by calculating the kinematic eddy viscosity and eddy diffusion coefficient of the stratification model. The results were used as input data for the ecosystem model and compared with DO, COD, I-N, and I-P, which is the standard index of ocean water quality. As a result, it was determined that COD and T-N are third grade and T-P is second grade standards for a natural environment.

Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services

  • Kim, Jang K.;Yarish, Charles;Hwang, Eun Kyoung;Park, Miseon;Kim, Youngdae
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • Seaweed aquaculture technologies have developed dramatically over the past 70 years mostly in Asia and more recently in Americas and Europe. However, there are still many challenges to overcome with respect to the science and to social acceptability. The challenges include the development of strains with thermo-tolerance, disease resistance, fast growth, high concentration of desired molecules, the reduction of fouling organisms and the development of more robust and cost efficient farm systems that can withstand storm events in offshore environments. It is also important to note that seaweed aquaculture provides ecosystem services, which improve conditions of the coastal waters for the benefit of other living organisms and the environment. The ecosystem services role of seaweed aquaculture and its economic value will also be quantitatively estimated in this review.