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Abstract : Temporal changes in the number of zooplankton species are important information for under-

standing basic characteristics and species diversity in marine ecosystems. The aim of the present study was

to estimate the optimal monitoring frequency (OMF) to guarantee and predict the minimum number of spe-

cies occurrences for studies concerning marine ecosystems. The OMF is estimated using the temporal

number of zooplankton species through bi-weekly monitoring of zooplankton species data according to

operational taxonomic units in the Tongyoung coastal sea. The optimal model comprises two terms, a con-

stant (optimal mean) and a cosine function with a one-year period. The confidence interval (CI) range of

the model with monitoring frequency was estimated using a bootstrap method. The CI range was used as a

reference to estimate the optimal monitoring frequency. In general, the minimum monitoring frequency

(numbers per year) directly depends on the target (acceptable) estimation error. When the acceptable error

(range of the CI) increases, the monitoring frequency decreases because the large acceptable error signals a

rough estimation. If the acceptable error (unit: number value) of the number of the zooplankton species is

set to 3, the minimum monitoring frequency (times per year) is 24. The residual distribution of the model

followed a normal distribution. This model can be applied for the estimation of the minimal monitoring

frequency that satisfies the target error bounds, as this model provides an estimation of the error of the zoo-

plankton species numbers with monitoring frequencies.

Key words : zooplankton, temporal number of species model, confidence interval, Bootstrap method,
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1. Introduction

Zooplankton is important as an energy messenger in the

food chain of the ocean ecosystem. These zooplanktons

live in diverse areas, such as the coastal seas, ranging

from the surface to deep bottom layers of the ocean

(Nishida and Nishikawa 2011). Despite differences in the

diverse environments, the homeostasis in species diversity

of zooplankton provides important information for the

characteristic analysis of the marine ecosystem, the

evolution of the marine organisms and the conservation of

the ecosystem (Irigoien et al. 2004; Tittensor et al. 2010).

The zooplankton species diversity considerably varies

with changes in the coastal environment and species-

specific life cycles (Nogueira 2001; Lo et al. 2004;

Hwang et al. 2011; Lee et al. 2006). The range and

frequency are different for the analysis of spatio-temporal

changes in species composition. The typical sampling

periods range from 4 times (seasonal survey) to 50 times

per year within surveyed areas (Moon et al. 2010; Lee et

al. 2006; Lee et al. 2012; Hwang et al. 2011).

The ecosystem survey requires an optimal or appropriate

monitoring plan for the biological and physiological

change analysis because there is a limitation on available

cost and labor (Millard and Lettenmaier 1986; Dixon and

Chiswell 1996). The increased monitoring numbers for

zooplankton reduces the confidence intervals in the

estimation error of zooplankton species models based on

the monitoring data. The increase in survey numbers,

however, means an increase in time and labor necessary

for species identification. Thus, studies on the estimation

of the minimum optimal monitoring frequency (OMF) are

necessary to target acceptable error boundaries. The aim

of the present study was to estimate the OMF to guarantee

and predict the minimum number of species needed for

studies concerning marine ecosystems. The OMF is

estimated using the temporal number of zooplankton

species models using the bi-weekly monitored zooplankton

species data according to operational taxonomic units in the

Tongyoung coastal sea. The confidence interval (CI) of

the model with monitoring frequency is estimated using a

bootstrap method. The CI is used as the reference to

estimate the optimal monitoring frequency.

2. Materials and Methods

Materials

A total of 43 samples were collected nearly bi-weekly

using a conical net (front half – cylindrical, connected rear

half – conical; mouth diameter, 60 cm; mesh size, 200 µm;

length, 300 cm; vertical towing) attached flowmeter from

March, 2013 to September, 2014 in the Tongyoung

Marine Science Station of the Korea Institute of Ocean

Science and Technology (34
o
45.80'N, 128

o
21.45'E) off the

Tongyoung coast. The difference in species number may

occur depending on the inflow-quantity. However, in the

Table 1. Data set on the number of zooplankton species and sampling dates 

Date

(YYYYMMDD)
No. of Species　

Date

(YYYYMMDD)
No. of Species　

Date

(YYYYMMDD)　
No. of Species　

20130313 14 20131021 20 20140529 25

20130327 19 20131104 12 20140612 25

20130411 14 20131118 12 20140626 27

20130425 15 20131204 14 20140714 20

20130511 20 20131218 9 20140728 30

20130525 19 20140102 12 20140812 23

20130610 30 20140116 6 20140812* 31

20130624 22 20140203 10 20140825 17

20130706 24 20140217 13 20140825* 24

20130723 24 20140303 16 20140911 19

20130808 25 20140317 14 20140911* 27

20130822 25 20140401 13 20140925 18

20130906 27 20140415 19 20140925* 27

20130923 25 20140429 18

20131007 19 20140514 21

Ref. * = Sampled at different time, but regarded as the same day monitoring data set
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present study, the difference was found to be insignificant

because the species number of zooplankton reached the

saturation level of the rare-faction curve. 

The independent zooplankton species were identified

by using DNA meta-bar-coding process to be explained in

detail below and the number of zooplankton species was

obtained after counting the available species numbers

obtained (selected data based on the threshold reading

numbers) at different sampling times (Table 1; KIOST

2016). The genomic DNA (gDNA) of zooplankton was

extracted using the QIAGEN® DNeasy Blood & Tissue

KIT (Qiagen, Inc., Valencia, CA). The gDNA was

subsequently amplified using a previously described

primer set (mlCOIintF and jgHCO2198, Leray et al.

2013). After generating a library using refined PCR

products, we sequenced the PCR products according to

the protocol of MiSeq (Illumina Inc., San Diego, CA).

The nucleotide sequences for low-quality reads and

chimeras were removed using the CD-HIT-OTU program.

Subsequently, clustering was performed based on the

Molecular Operational Taxonomic Units (MOTUs) at the

98% similarity level (Li et al. 2012; Blaxter et al. 2005;

Machida et al. 2009). After searching/comparing the

NCBI non-redundant database and MegaBLAST MOTUs

with these produced MOTUs, the zooplankton species

were confirmed (Zhang et al. 2000), and the MOTUs had

a pair-wise identity over 97% and query coverage over

90% (Carew et al. 2013).

Methods

Temporal number of zooplankton species model 

The simplest model of the number of zooplankton

species model is the mean-constant model. This model is

has only one parameter, but is optimal because it cannot

explain temporal changes, such as seasonal and inter-

annual changes. The optimal model was selected based on

the AIC (akaike information criteria) values computed

using Eq. (1). When the AIC value is minimal, the model

can be regarded as optimal (Akaike 1974; Johnson and

Omland 2004), 

(1)

in which, k is the number of the model parameters, n is the

size of the data sample (in this study, n = 43), and RSS is

the residual sum of squares.

The candidate models comprise the summations of

functions with many period components, from the 1-year

period to semi-annual, seasonal, and monthly cycle terms.

The optimal model is selected after comparing the AIC

values computed from the possible models. The temporal

number of the zooplankton species model can be

expressed as Eq. (2), in general form. The parameters are

optimally estimated using the least squares method,

minimizing the cost function as the residual (error) sum of

squares in the given number of the harmonic functions, M,

as shown in Eq. (1):

(2)

in which  is the number of zooplankton species at

time ti ( ), n is the number of samples, 

is the optimal mean of the number of zooplankton

species, M is the number of harmonic functions, and ωj

 is the frequency components of the

model, defined as 2πj/365.25 (1/days). Aj, φj are the

amplitude and phase of the harmonic function with the

frequency ωj, respectively; εi is the residual error, defined

as the difference between the observed and model-

estimated number of zooplankton species at time ti.

The data used in this study were collected for

approximately one and a half years. The monitoring date

of the data was converted to Julian days to generate intra-

annual data. Thus, the model can be considered as a

temporal model for understanding intra-annual, not inter-

annual, changes. The model can be set up using the

number of zooplankton species data accumulated/collected

during many years, assuming no trend. Using this model,

it is possible to estimate the expected number (reference

number) of times and/or samples to satisfy the target error

bounds. The normality on the residuals is assessed using

KS and Anderson-darling tests with 95% confidence

levels in the ‘nortest’ package in R (Juergen and Uwe

2015). This value can be used to estimate the confidence

intervals of the model when the error distribution follows

a normal distribution.

There are parametric and non-parametric methods for

when the temporal number of a species model is assumed

to be a harmonic function and not assumed to be another

specific function, respectively. The latter is more flexible

than the former because the model is not subject to a

specific function. However, the non-parametric methods

have more complex expression functions, such as the

summation form of functions, making statistical inferences

difficult because of the lack of supported closed-form of

functions (Wand and Jones 1995; Martinez and Martinez

2005). In the present study, the model is estimated using a

non-parametric method. These data are subsequently used

as the reference model to determine whether estimating

AIC 2k n log RSS/n( )⋅+=

NZ ti( ) NZ Ajcos ωj ti φj–⋅( )
j 1=

M

∑ εi+ +=

NZ ti( )
i 1 2 … n, , ,= NZ

j 1 2 … M, , ,=( )



16 Cho, H.-Y. et al.

the other model using a parametric method is suitable.

This non-parametric model, expressed as a locally smoothed

regression curve, can be estimated using the ‘locpoly’

function in R ‘KernSmooth’ package, and ‘smooth’

function (option=‘loess’) supported through MATLAB. In

the present study, we estimated the model using the

‘smooth’ function in MATLAB. To generate the smooth

curves in data boundaries (times are indicated near the left

(1) and right (365) boundaries), the virtual data sets were

added to the original data after adjusting the time index.

When the original data set comprises the sampling time in

Julian days and number of zooplankton species, the

virtual data sets are the same, except for the time. In

virtual data, the time was changed to time+365 and time-

365 days, and the data size increased 3-fold. 

Confidence interval estimation using the bootstrap method

The confidence intervals (CIs, error bounds, also

considered as the CI range = the range of the upper and

lower limits of the CI) of the temporal number of the

zooplankton species (TNZS) model were estimated using

the bootstrap method, a powerful method using random

re-sampling simulations with substitution when analytical

computational methods are not available and the assumption

on error distribution is not required. This method is a

Monte-Carlo simulation method, estimating the CIs at a

given significance level α after computing the specific

percentile values of many (about above 1,000 to 1,000,000)

simulated results (Efron 1979; Rubinstein and Kroese

2008). This method has been widely used to examine the

statistical methods and estimate the optimal monitoring

intervals and CIs with given monitoring intervals for the

variation pattern analysis of the environmental and

ecological parameters (Anttilla et al. 2012; Dowd et al.

2004; U.S. Environmental Protection Agency 2010; Cho

et al. 2013). 

In the present study, the 90%-confidence intervals

(significance level 10%, double-sided) of the mean error

bound of the model were estimated. The mean error

bound is defined as the error bound using the optimal

parameter estimation for this model. The simulation

number used was 100 for the sake of computational

efficiency. The larger the number is, the lower the

computational efficiency becomes. The simulation number

determines the mean error bound of the estimated error

bounds and is suggested analytically as  with

the assumption of the normality of the error bound

distribution. In this method, however, the 95%-CI of the

mean error bound was also estimated using the bootstrap

method for consistency. In this case, the simulation

number was also 100. The CI obtained using the bootstrap

method is the error range associated with the model

selection (optimal estimation), and this value is different

from the error obtained upon estimation of the number of

zooplankton species using the model.

3. Results 

Estimation error resulting from the level (order) of

model complexity 

The estimated number of zooplankton species using

candidate models was compared with the observed

±1.96σ̂/ n

Table 2. Changes in the AIC values with the number of harmonic functions, M 

M (number of harmonic 

function sets)

Additional period components

(cumulative from the first row)

Number of parameters, 

k

Residual sum of 

squares
AIC value

0 Mean 1 38.38 158.40

1 + year (annually) 3 10.45 105.88

2 + 1/2 year (semi-annually) 5 10.20 108.84

3 + 1/3 year 7 9.80 111.12

4 + 1/4 year (seasonally) 9 9.27 112.76

5 + 1/5 year 11 8.89 114.93

6 + 1/6 year 13 8.34 116.17

7 + 1/7 year 15 7.91 117.89

8 + 1/8 year 17 7.67 120.62

9 + 1/9 year 19 6.99 120.57

10 + 1/10 year 21 6.71 122.87

11 + 1/11 year 23 6.56 125.88

12 + 1/12 year (monthly) 25 6.37 128.59
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numbers after optimal parameter estimation. The estimation

error (residual) sum of squares and AIC values are shown

in Table 2. The optimal model was selected as a function

only with including the 1-year period component because

the AIC value was minimal at that condition. The function

is shown in Eq. (3), and the simplest mean model is also

expressed in Eq. (4) for a basic comparison.

(3)

(4)

Based on the optimal model, the timings (dates) of the

maximum and minimum number of zooplankton species

were calculated using the conditions 

= 0 and , respectively. The

computed dates in Julian days were 202 (21st July) and 19

(19th January), respectively, and the numbers of species

observed on those dates were 26 (maximum) and 10

(minimum), respectively.

The mean model showed a large AIC value, reflecting

large residuals (variance of the data) defined as differences

in the observed and estimated number of the zooplankton

species. Although the residuals of the more complex

models with more parameters decreased, the quantitative

effects were not large compared with the increase in the

number of parameters used to calculate the AIC values.

However, the model estimated using the non-parametric

method showed different shapes for the slope of the

increasing and decreasing stages and the peak pattern

(more flat than the parametric model). However, the non-

parametric model was within the 95% error bounds of the

N
Z

t
i

( ) 17.95 7.86 cos
2πt

i

365.25
---------------- 2.81+⎝ ⎠
⎛ ⎞⋅ N 0 3.19

2,( )+ +=

N
Z

t
i

( ) 17.95 7.86 cos
2π

365.25
---------------- t

i
201.65–( )⎝ ⎠

⎛ ⎞⋅ N 0 3.19
2,( )+ +=

N
Z

t
i

( ) 19.63 N 0 6.20
2,( )+=

2πti/365.25( ) 2.81+

2πti/365.25( ) 2.81+ π=

Fig. 1. CI curves (90%) of the error bounds of the model with the number of survey times. The red line represents

the optimal model function. The black and blue lines show the upper and lower limits of the model at 10%

and 25% significance levels, respectively. The cyan lines represent the estimated models using the generated

samples and the bootstrap method. (a) Seasonal survey (n = 4), (b) Bi-monthly survey (n = 6), (c) Monthly survey

(n = 12), and (d) Bi-weekly survey (n = 24)
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parametric model. The residual components of the optimal

model followed the normal distribution based on the KS-

test and Anderson-Darling test in terms of 95% confidence

intervals (5% significance level). The CIs (estimation

error bounds) were approximately ±2 number of species. 

Confidence interval estimation of the model based on

survey times 

The survey times are the sample numbers used to

determine the confidence intervals. We assumed that the

total data on the number of zooplankton species collected

at Tongyoung Marine Science Station constituted the

reference population. The 90% CI estimation of the model

was determined using a bootstrap method. The CI

decreased with increasing survey times from 4, 6, and 12

to 24 times (Fig. 1). The analysis of the variation pattern

was performed using both 75 and 90% confidence

intervals. Both CIs decreased, showing power function

patterns. For fewer survey times, the CI rapidly increased.

Subsequently, for survey times longer than 24 times, the

CI slowly decreased to a negligible extent. The CI with

survey times provided in Table 3 can be fitted with the

power function shown in Eq. (5). The exponents of the

functions were -0.76 and -0.67 at the 90% and 75%

confidence intervals, respectively.

(5)

in which, Y denotes the CIs, the subscripts of Y (90 and

75) are the percentage values of the confidence levels, X is

the number of surveys (survey times), and R2 is the

coefficient of determination. If the acceptable error (unit:

number value) of the number of the zooplankton species

is set to 3, the minimum monitoring frequency (times per

year) is 24. 

4. Discussions

Basic information on the number of zooplankton

species is essential for understanding the characteristic

marine ecosystems. For diverse analyses, such as that of

the life cycle, influence on the species due to seasonal

environmental parameters (e.g., water temperature) and

habitat changes are likely derived using these data (Allan

1976; Conover and Huntley 1991; Machida et al. 2009).

In addition, information on the characteristic parameters

of zooplankton can be used as indicators for the assessment

and management of the environmental and ecological

impacts of global warming and ocean acidification

(particularly, decreasing pH, not yet reaching a neutral pH

of 7.0) (Link et al. 2002; Bucklin et al. 2010).

However, the accurate identification of zooplankton

species diversity is difficult because the number of species

increases following the rarefaction curve. The number of

species is not linearly proportional to the survey times and

the amount (weight) of the samples (Machida et al. 2009).

In the present study, we estimated the optimal survey

frequency necessary for the analysis of the species

composition and number of species using data for the

number of zooplankton species monitored bi-weekly in

the Marine Research Platform in the Tongyoung coastal

sea. The size of the data set was 43. The optimal model

for the temporal number of zooplankton species was

selected based on these data. The CI due to survey times

was estimated using a bootstrap method (Efron 1979).

Based on the optimal model, the dates for the maximum

and minimum number of zooplankton species can be

calculated. The computed dates, as Julian days, were 202

(21st July) and 19 (19th January), respectively, and the

numbers of species observed on those dates were 26 and

10, respectively. These results were strongly expected, as

these numbers are approximately consistent with typical

water temperature variation patterns. The model estimated

using a non-parametric method showed different shapes in

the slope of the increasing and decreasing stages and the

peak patterns (more flat than the parametric model), as

shown in Fig. 2. However, these differences were not

Y
90

34.01 X
0.76–⋅=   R

2
0.960=( )

Y
75

13.41 X
0.67–⋅=   R

2
0.985=( )

Table 3. Mean, lower and upper limits of the model esti-

mation error with the number of survey times 

Survey 

times

Mean and 95% CI on the 

90% CIs of the model 

estimation error

Mean and 95% CI on the 

75% CIs of the model 

estimation error

4 15.57 [12.13, 19.20] 6.08 [5.29, 6.95]

6 8.00 [ 7.13, 9.10] 3.89 [3.56, 4.28]

8 6.09 [ 5.58, 6.75] 3.08 [2.81, 3.41]

12 4.57 [ 4.20, 4.89] 2.33 [2.10, 2.53]

16 3.82 [ 3.53, 4.07] 1.97 [1.82, 2.15]

20 3.32 [ 3.04, 3.57] 1.72 [1.57, 1.90]

24 2.97 [ 2.83, 3.22] 1.56 [1.43, 1.71]

28 2.76 [ 2.56, 2.92] 1.43 [1.32, 1.56]

32 2.55 [ 2.32, 2.74] 1.32 [1.19, 1.47]

36 2.41 [ 2.23, 2.61] 1.27 [1.13, 1.39]

40 2.25 [ 2.08, 2.43] 1.18 [1.07, 1.29]

Ref. The value shown in the cell is the mean, and the values shown in

the bracket [ ] are the lower and upper limits, respectively. These

values correspond to the number of species
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statistically significant. The CI of the model decreased

with increasing survey time. The residual distribution of

the model followed a normal distribution. In general, the

minimum monitoring frequency (numbers per year)

directly depends on the target (acceptable) estimation

error. When the acceptable error (range of the CI) increases,

the monitoring frequency decreases. Based on the results

of this study, the minimum frequency is 24. The

uncertainty of the annual fluctuation numbers increased as

the frequency of zooplankton surveys decreased (Fig. 1).

The uncertainty level should be low for the accurate

analysis of an ecosystem using the number of species and

species composition data for zooplankton. 

The species numbers and diversity indices have been

suggested as the basic statistics for the analysis of the

diverse ecological research fields on zooplankton (Lee et

al. 2006; Moon et al. 2010; Lee et al. 2012). However, it

is difficult to directly compare these values. The numbers

of species are expected to show a large fluctuation with

the number of surveys (frequency) based on the model

results (see Fig. 1) for the zooplankton occurrence suggested

in the present study. Therefore, this model might reflect

the determination of the optimal survey times necessary

for understanding the ecological zooplankton structure.

5. Conclusions and recommendations

The optimal temporal model for the number of

zooplankton species in Tongyoung coastal sea can be

expressed as the following model-function:

 

The minimum monitoring number is 24 when the

acceptable model estimation error is set to 3. It means that

at least 24 monitoring times per year (approximately 2

times per month) are required to keep the errors

(fluctuation size) below 3. Based on the results of this

study, bi-weekly monitoring data are considered sufficient

to quantify the annual variation of the number of

zooplankton species without any significant error. However,

since this study was carried out using only one coastal

monitoring station data, it is necessary to be careful to use

it as a monitoring standard for the whole coastal waters in

Korea. In order to set more general criteria, a comparative

study with the results of analysis using data of many

different coastal waters is highly required. In addition, an

error analysis using data with more short-term time scales

(smaller than two weeks interval) is highly recommended.

In practice, a continuous monitoring system is the best,

when possible.
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