• Title/Summary/Keyword: nanotube, surface effects

Search Result 67, Processing Time 0.031 seconds

Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping

  • Farokhian, Ahmad;Salmani-Tehrani, Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.229-251
    • /
    • 2020
  • In this paper, dynamic buckling of a smart sandwich nanotube is studied. The nanostructure is composed of a carbon-nanotube with inner and outer surfaces coated with ZnO piezoelectric layers, which play the role of sensor and actuator. Nanotube is under magnetic field and ZnO layers are under electric field. The nanostructure is located in a viscoelastic environment, which is assumed to obey Visco-Pasternak model. Non-local piezo-elasticity theory is used to consider the small-scale effect, and Kelvin model is used to describe the structural damping effects. Surface stresses are taken into account based on Gurtin-Murdoch theory. Hamilton principle in conjunction with zigzag shear-deformation theory is used to obtain the governing equations. The governing equations are then solved using the differential quadrature method, to determine dynamic stability region of the nanostructure. To validate the analysis, the results for simpler case studies are compared with others reported in the literature. Then, the effect of various parameters such as small-scale, surface stresses, Visco-Pasternak environment and electric and magnetic fields on the dynamic stability region is investigated. The results show that considering the surface stresses leads to an increase in the excitation frequency and the dynamic stability region happens at higher frequencies.

An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza;Boreiry, Mahya
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.179-200
    • /
    • 2016
  • In this paper the differential transformation method (DTM) is utilized for vibration and buckling analysis of nanotubes in thermal environment while considering the coupled surface and nonlocal effects. The Eringen's nonlocal elasticity theory takes into account the effect of small size while the Gurtin-Murdoch model is used to incorporate the surface effects (SE). The derived governing differential equations are solved by DTM which demonstrated to have high precision and computational efficiency in the vibration analysis of nanobeams. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of thermal loading, small scale and surface effects, mode number, thickness ratio and boundary conditions on the normalized natural frequencies and critical buckling loads of the nanobeams in detail. The results show that the surface effects lead to an increase in natural frequency and critical buckling load of nanotubes. It is explicitly shown that the vibration and buckling of a nanotube is significantly influenced by these effects and the influence of thermal loadings and nonlocal effects are minimal.

The Memory Effects of a Carbon Nanotube Nanodevice

  • Lee Chi-Heon;Kim Ho-Gi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.26-29
    • /
    • 2003
  • To discover electrical properties of individual single wall nanotube(SWNT), a number of SWNT-based tubeFETs have been fabricated. The device consists of a single semiconducting SWNT on an insulating substrate, contacted at each end by metal electrodes. It presents high transconductances, and charge storage phenomenon, which is the operations of injecting electrons from the nanotube channel of a tubeFET into charge traps on the surface of the $SiO_2$ gate dielectric, thus shifting the threshold voltage. This phenomenon can be repeated many times, and maintained for the hundreds of seconds at room temperature. We will report this phenomenon as the memory effects of the SWNT, and attempt to use this property for the memory device.

Effects of Surface Treatment on Field Emission Properties for Carbon Nanotube Cathodes (탄소나노튜브 캐소드에서 표면처리 방법이 전계방출 특성에 미치는 영향)

  • Seong, Myeong-Seok;Oh, Jeong-Seob;Lee, Ji-Eon;Jung, Seung-Jin;Kim, Tae-Sik;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Carbon nanotube cathodes (CNT cathodes) were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatment on CNT cathodes were investigated for use in high efficiency field emission displays. The optimum surface treatment for a CNT cathode is dependent on a relative bonding force of CNT films on the cathode after a heat treatment. Because of the high bonding force used in the Liquid method, this method is recommended for CNT cathodes which are heat-treated at $390^{\circ}C$ in a $N_2$ atmosphere. The Rolling method is applicable for CNT cathodes fabricated at $350^{\circ}C$ in an atmosphere of air. The results of this study provide basic criteria for the selection of an appropriate surface treatment for large area CNT cathodes.

Transformation of TiO2 Film to Titanate Nanotube Thin Film Using Hydrothermal Method

  • Guo, Yupeng;Lee, Nam-Hee;Oh, Hyo-Jin;Yoon, Cho-Rong;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.147-148
    • /
    • 2007
  • In this study, the technology to grow oriented nanotube thin film from dip-coated $TiO_2$ using hydrothermal method has been successfully developed. The effects of preparation parameters, such as reaction temperature, duration and post treatment conditions on the film morphologies and the adherence to the substrate, have been examined. A general formation mechanism of oriented titanate nanotube thin film is proposed in terms of the detailed observation of the products via two dimensional surface FESEM studies and HRTEM images. The overall formation of $TiO_2-based$ nanotube thin film can be summarized with three successive steps: (1) $TiO_2$ dissolving and amorphous $Na_2TiO_3$ deposition process; (2) layered $Na_2Ti_3O_7$ formation via spontaneous crystallization and rapid growth process; (3) formation of nanotube thin film via $Na_2Ti_3O_7$ splitting and multilayer scrolling process of (100) planes around the c axis of $Na_2Ti_3O_7$.

  • PDF

Impacts of surface irregularity on vibration analysis of single-walled carbon nanotubes based on Donnell thin shell theory

  • Selim, Mahmoud M.;Althobaiti, Saad;Yahia, I.S.;Mohammed, Ibtisam M.O.;Hussin, Amira M.;Mohamed, Abdel-Baset A.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.483-488
    • /
    • 2022
  • The present work is an attempt to study the vibration analysis of the single-walled carbon nanotubes (SWCNTs) under the effect of the surface irregularity using Donnell's model. The surface irregularity represented by the parabolic form. According to Donnell's model and three-dimensional elasticity theory, a novel governing equations and its solution are derived and matched with the case of no irregularity effects. To understand the reaction of the nanotube to the irregularity effects in terms of natural frequency, the numerical calculations are done. The results obtained could provide a better representation of the vibration behavior of an irregular single-walled carbon nanotube, where the aspect ratio (L/d) and surface irregularity all have a significant impact on the natural frequency of vibrating SWCNTs. Furthermore, the findings of surface irregularity effects on vibration SWCNT can be utilized to forecast and prevent the phenomena of resonance of single-walled carbon nanotubes.

Effect of Surface Morphology and Adhesion Force on the Field Emisson Properties of Carbon Nanotube Based Cathode (탄소나노튜브 캐소드의 전계방출 특성에 대한 표면 형상과 부착력의 영향)

  • Jung, Hyuk;Cho, You-Suk;Kang, Young-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.277-282
    • /
    • 2008
  • The effects of the field emission property in relation to the surface morphology and adhesion force were investigated. The single-wall-nanotube-based cathode was obtained by use of an in-situ arc discharge synthesis method, a screen-printing method and a spray method. The morphologies of the formed emitter layers were very different. The emission stability and uniformity were dramatically improved by employing an in-situ arc discharge synthesis method. In this study, it was confirmed that the current stability and uniformity of the field emission of the cathode depend on the surface morphology and adhesion force of the emitters. The current stability of the field emission device was also studied through an electrical aging process by varying the current and electric field.

Effects of NH4F and H2O on the Geometry of TiO2 Nanotubes (TiO2 나노튜브 형상에 미치는 NH4F와 H2O의 영향)

  • Gim, Geon-Du;Jang, Sang-Soon;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.138-145
    • /
    • 2018
  • The aim of this work is the attainment of the $TiO_2-nanotube$ photocatalytic-growth condition using anodization, whereby the $NH_4F-H_2O$ weight ratio is appropriately controlled. We fabricated the $TiO_2$ nanotubes using a two-step anodization (first step is 1 hr; second step is 30 hr) under the ambient pressure and the room temperature at 60 V in ethylene-glycol solutions to investigate the effects of the $NH_4F$(0.1,0.3,0.5wt%) and $H_2O$(1-3wt%) on the $TiO_2-nanotube$ geometry and the photocatalytic efficiency. Further, the decomposition efficiency of the methylene blue on the $TiO_2$ nanotubes by the UN radiation depended on the geometrical change of the nanotube geometry, indicating the proportionality of the decomposition efficiency to the surface area that was affected by the $NH_4F$ and $H_2O$ concentrations. As the $NH_4F$ weight was increased, the surface area initially decreased but slightly increased later, and the length consistently increased. As the $H_2O$ weight was increased, the surface area and length initially increased, but later decreased with the 3 wt% $H_2O$.

Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.107-128
    • /
    • 2018
  • Thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) is investigated within the framework of Timoshenko beam theory. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture and are considered to be temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and are solved using an efficient semi-analytical technique of the differential transform method (DTM). Comparison between the results of the present work and those available in literature shows the accuracy of this method. A parametric study is conducted to study the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and various boundary conditions on free vibration behavior of sandwich beams with FG-CNTRC face sheets. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects.

Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology (라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향)

  • Woo, Dong-Kyun;Noh, Won-Jin;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.534-539
    • /
    • 2010
  • Polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via latex technology and the effect of nanotube length on rheological properties were investigated. Monodisperse PS particle was synthesized by the emulsifier-free emulsion polymerization and two types of MWCNTs were used after surface modification to improve dispersion state and to remove impurities. Final nanocomposites were prepared by the freeze-drying process after dispersing the PS particles and the surface-modified MWCNTs in a ultrasonic bath. The effects of MWCNT content and nanotube length on rheological properties were evaluated by imposing the small-amplitude oscillatory shear flow. The PS/MWCNT nanocomposites showed that rheological properties were enhanced as the amount and length of MWCNT increased. It is speculated that the rheological characteristics of nanocomposites change from liquid-like to solid-like as the MWCNT amount increases, and the critical concentration to achieve network structure decreases as the nanotube length increases.