DOI QR코드

DOI QR Code

Effects of NH4F and H2O on the Geometry of TiO2 Nanotubes

TiO2 나노튜브 형상에 미치는 NH4F와 H2O의 영향

  • Gim, Geon-Du (Department of Materials Science and Engineering, Hongik University) ;
  • Jang, Sang-Soon (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, Heesan (Department of Materials Science and Engineering, Hongik University)
  • 김건두 (홍익대학교 금속공학과) ;
  • 장상순 (홍익대학교 금속공학과) ;
  • 김희산 (홍익대학교 금속공학과)
  • Received : 2018.04.17
  • Accepted : 2018.05.30
  • Published : 2018.06.29

Abstract

The aim of this work is the attainment of the $TiO_2-nanotube$ photocatalytic-growth condition using anodization, whereby the $NH_4F-H_2O$ weight ratio is appropriately controlled. We fabricated the $TiO_2$ nanotubes using a two-step anodization (first step is 1 hr; second step is 30 hr) under the ambient pressure and the room temperature at 60 V in ethylene-glycol solutions to investigate the effects of the $NH_4F$(0.1,0.3,0.5wt%) and $H_2O$(1-3wt%) on the $TiO_2-nanotube$ geometry and the photocatalytic efficiency. Further, the decomposition efficiency of the methylene blue on the $TiO_2$ nanotubes by the UN radiation depended on the geometrical change of the nanotube geometry, indicating the proportionality of the decomposition efficiency to the surface area that was affected by the $NH_4F$ and $H_2O$ concentrations. As the $NH_4F$ weight was increased, the surface area initially decreased but slightly increased later, and the length consistently increased. As the $H_2O$ weight was increased, the surface area and length initially increased, but later decreased with the 3 wt% $H_2O$.

Keywords

References

  1. G.-S. Kim, Y.-S. Kim, H. I. Kim, H.-K. Seo, O-B. Yang, and H.-S. Shin, Korean Chem. Eng. Res., 44, 179 (2006).
  2. J. B. and B. Zhou, Chem. Rev., 114, 10131 (2014). https://doi.org/10.1021/cr400625j
  3. A. Rezaee, Gh. H. Pourtaghi, A. Khavanin, R. Sarraf Mamoory, M. T. Ghaneian, and H. Godini, Iran. J. Environ. Health. Sci. Eng., 5, 305 (2008).
  4. Y. Ku, Y.-C. Lee, and W.-Y. Wang, J. Hazard. Mater., 138, 350 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.057
  5. X. Pan, C. H. Chen, K. Zhu, and Z. Y. Fan, Nanotechnology, 22, 23 (2011).
  6. P. Pichat, Molecules, 19, 15075 (2014). https://doi.org/10.3390/molecules190915075
  7. M. V. Rao, K. Rajeshwar, V. R. Vernerker, and J. Dubow, J. Phys, Chem., 84, 1987 (1980). https://doi.org/10.1021/j100452a023
  8. J. H. Choi, H. J. Kim, Y. K. Lee, H. S. Jung, and K. S. Homg, Polym. Sci. Technol, 15, 191 (2004).
  9. S. Yoriya, Ph. D. Thesis, pp. 80-82, Pennsylvania State University, Pennsylvania (2010).
  10. B.G. Lee, S.E. Lee, J.W. Choi, H.-J. Oh, O. Y. Lee, and C-S. Chi, J. Kor. Inst. Met. & Mater., 46, 730 (2008).
  11. P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed., 50, 2904 (2011). https://doi.org/10.1002/anie.201001374
  12. H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, J. Phys. Chem. C , 111, 7235 (2007). https://doi.org/10.1021/jp070273h
  13. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, and C. A. Grimes, J. Mater. Res., 18, 2588 (2003). https://doi.org/10.1557/JMR.2003.0362
  14. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys., 25, 1258 (1992). https://doi.org/10.1088/0022-3727/25/8/017
  15. G. E. Thompson, Thin Solid Films, 297, 192 (1997). https://doi.org/10.1016/S0040-6090(96)09440-0
  16. J. Siejka and C. Ortega, , ECS J. Solid State Sci. Technol, 124, 883 (1977).
  17. D. D. Macdonald, J. Electrochem. Soc., 140, L27 (1993). https://doi.org/10.1149/1.2056179
  18. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol. Energ. Mater. Sol. C., 90, 2011 (2006). https://doi.org/10.1016/j.solmat.2006.04.007
  19. S. Yoriya, Ph. D. Thesis, p. 75, Pennsylvania State University, Pennsylvania (2010).
  20. H. Habazaki, K. Shimizu, S. Nagata, P. Skeldon, G. E. Thompson, G. C. Wood, J. Electrochem. Soc., 149, B70 (2002). https://doi.org/10.1149/1.1445171
  21. S. Li, G. Zhang, D. Guo, L. Yu, and W. Zhang, J. Phys. Chem. C., 113, 12759 (2009).
  22. J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Angew. Chem. Int. Ed., 44, 7463 (2005). https://doi.org/10.1002/anie.200502781
  23. J. M. Macak and P. Schmuki, Electrochim. Acta., 52, 1258 (2006). https://doi.org/10.1016/j.electacta.2006.07.021
  24. K. S. Raja, T. Gandhi, and M. Misra, Electrochem. Commun., 9, 1069 (2007). https://doi.org/10.1016/j.elecom.2006.12.024
  25. Y. Xue, Y. Sun, G. Wang, K. Yan, and J. Zhao, Electrochim. Acta, 155, 312 (2015). https://doi.org/10.1016/j.electacta.2014.12.134
  26. Z. B. Xie and D. J. Blackwood, Electrochim. Acta, 56, 905 (2010). https://doi.org/10.1016/j.electacta.2010.10.004
  27. Young Ku, Y.C.W.H., Micro Nano Lett., 7, 939 (2012). https://doi.org/10.1049/mnl.2012.0488
  28. Y. Q. Liang, Z. D. Cui, S. L. Zhu, and X. J. Yang, Thin Solid Films., 519, 5150 (2011). https://doi.org/10.1016/j.tsf.2011.01.075
  29. J. M. Macak, H. Hilderbrand, U. Marten-Jahns, and P. Schmuki, J. Electroanal. Chem., 621, 254 (2008). https://doi.org/10.1016/j.jelechem.2008.01.005
  30. D. Wang, Y. Liu, B. Yu, F Zhou, and W. Liu, Chem. Mater., 21, 1198 (2009). https://doi.org/10.1021/cm802384y
  31. Y. L. Cheong, K. P. Beh, F. K. Yam, and Z. Hassan, Superlattice. Microst., , 94, 74 (2016). https://doi.org/10.1016/j.spmi.2016.04.006
  32. S. Yoriya, Ph. D. Thesis, pp. 143-177, Pennsylvania State University, Pennsylvania (2010).
  33. Fancisco Javier Quintero Cortes, How to improve adhesion between $TiO_2$ anotube/Ti substrate, https://www.researchgate.net (2015).
  34. Y. Alivov, M. Pandikunta, S. Nikishin and Z. Y. Fan, Nanotechnology, 20, 6 (2009).
  35. M. Naghizadeh, S. Ghannadi, H. Abdizadeh and M. R. Golobostanfard, Adv. Mater. Res., 829, 907 (2014).