• Title/Summary/Keyword: nanometer sized

Search Result 119, Processing Time 0.022 seconds

Generation of Nano/Submicron Particles Using an Electrically Heated Tube Furnace (전기가열 튜브로를 이용한 나노/서브마이크론 입자의 발생)

  • Ji, Jun-Ho;Pae, Yang-Il;Hwang, Jung-Ho;Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1734-1743
    • /
    • 2003
  • Aerosol generator using an electrically heated tube furnace is a stable apparatus to supply nanometer sized aerosols by using the evaporation and condensation processes. Using this method, we can generate highly concentrated polydisperse aerosols with relatively narrow size distribution. In this work, characteristics of particle size distribution, generated from a tube furnace, were experimentally investigated. We evaluated effects of several operation parameters on particle generation: temperature in the tube furnace, air flow rates through the tube, size of boat containing solid sodium chloride(NaCl). As the temperature increased, the geometric mean diameter increased and the total number concentration also increased. Dilution with air affected the size distribution of the particles due to coagulation. A smaller sized boat, which has small surface area to contact with air, brings smaller particles of narrow size distribution in comparison of that of a larger boat. Finally, we changed the electrical mobility diameter of aggregate sodium chloride particles by varying relative humidity of dilution air, and obtained non-aggregate sodium chloride particles, which are easy to generate exact monodisperse particles.

Effects of Polyamidoamine Dendrimers on the Catalytic Layers of a Membrane Electrode Assembly in Fuel Cells

  • Lee Jin Hwa;Won Jongok;Oh In Hwan;Ha Heung Yong;Cho Eun Ae;Kang Yong Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • The transport of reactant gas, electrons and protons at the three phase interfaces in the catalytic layers of membrane electrode assemblies (MEAs) in proton exchange, membrane fuel cells (PEMFCs) must be optimized to provide efficient transport to and from the electrochemical reactions in the solid polymer electrolyte. The aim of reducing proton transport loss in the catalytic layer by increasing the volume of the conducting medium can be achieved by filling the voids in the layer with small-sized electrolytes, such as dendrimers. Generation 1.5 and 3.5 polyamidoamine (PAMAM) dendrimer electrolytes are well-controlled, nanometer-sized materials with many peripheral ionic exchange, -COOH groups and were used for this purpose in this study. The electrochemically active surface area of the deposited catalyst material was also investigated using cyclic voltammetry, and by analyzing the Pt-H oxidation peak. The performances of the fuel cells with added PAMAM dendrimers were found to be comparable to that of a fuel cell using MEA, although the Pt utilization was reduced by the adsorption of the dendrimers to the catalytic layer.

Fabrication and Comparative Evaluation of Soybean Hull Nanofibrillated Cellulose (대두피 나노 섬유화 셀룰로오스 제작 및 비교 평가)

  • Jin-Hoon Kim;Hui-Yun Hwang
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.150-154
    • /
    • 2024
  • In this study, nanofibrillated cellulose was extracted from soybean hulls - a by-product of soybeans - and compared with soybean hull nanofibrillated cellulose obtained by using other nanofibrillated methods. Dry soybean hulls were ground into prepare micrometer-sized powders, from which microcellulose was isolated using NaOH and HCl. The nanometer-sized cellulose was successfully extracted through ultrasonic dispersion and ball milling. The soybean hull nanofibrillated cellulose exhibited a diameter of 60-100 nm and a length of 0.3-1.0 ㎛, which matches the diameter of soybean nanofibrillated cellulose made by other nanofibrillated methods but is significantly shorter in length.

Synthesis of 3β [L-Lysinamide-carbamoyl] Cholesterol Derivatives by Solid-Phase Method and Characteristics of Complexes with Antisense Oligodeoxynucleotides

  • Lee, Eun-Jung;Lee, Min-hyung;Park, Jong-Sang;Choi, Joon-Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1020-1024
    • /
    • 2006
  • In this report, we describe the synthesis of mono- and di-valent cationic $3\beta$ [L-Lysinamide-carbamoyl] cholesterol (K-Chol) derivatives by solid-phase peptide synthesis method and the characteristics of K-Chol/antisense oligodeoxynucleotide (ODN) complexes. K-Chol was able to interact with antisense ODNs electrostatically and constructed nanometer-sized complexes of 50-100 nm in diameter. The formation of K-Chol/antisense ODN complexes was demonstrated by non-denaturing polyacrylamide gel electrophoresis assay and atomic force microscopy. The cell-associated radioactivity was measured to monitor the cellular uptake of the complexes containing radioactive antisense ODNs using HL 60 cells.

Size Classification of Airborne Nanoparticles Using Electrically Tunable Virtual Impactor (전기적으로 분류 입경의 제어가 가능한 가상 임팩터을 이용한 대기 중 나노 입자의 분류)

  • Kwon, Soon-Myung;Kim, Yong-Ho;Park, Dong-Ho;Hwang, Jung-Ho;Kim, Yong-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • This paper reports the size classification of nanoparticles as well as electrical tuning techniques for the cut-off diameter and collection efficiency. Classifying particles < 100 nm in diameter is quite a technical challenge using a virtual impactor with the cut-off diameter being determined geometrically. However, the proposed virtual impactor can classify particles <100 nm and tune the cut-off diameter by electrically accelerating the particles. The cut-off diameter of the proposed device was tuned from 15 to 50nm.

Parameters affecting the recovery of silver (Ag) using photocatalytic ZnO nanopowder prepared by solution-combustion method.

  • B.B. Bhattarai;Lee, Ju-Hyeon;Park, Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.49-49
    • /
    • 2003
  • Nanometer sized zinc oxide (ZnO) powder was synthesized by a novel "solution-combustion method" and its photocatalytic activity was evaluated with the recovery of Ag from a used photofilm developing solution. Different parameters affecting the reaction rates like wavelength of the W light used, reaction temperature, mass of the used photocatalyst, and effect of scavenger were tested. The optimum parameters were found as follows. UV wavelength of less than 385nm, reaction temperature between 40- 60 $^{\circ}C$, photocatalyst concentration of 3-6 g/1, and scavenger concentration of 0.3-0.4 g/1.

  • PDF

Mechanism of Organogel Formation from Mixed-Ligand Silver (I) Carboxylates

  • Kim, Ji-Yeon;Park, Cheol-Hee;Kim, Sang-Ho;Yoon, Sung-Ho;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3267-3273
    • /
    • 2011
  • Ag(I) carboxylate gelators with mixed-ligands were systemically investigated to understand the mechanism of the organic gel formation. The gelators constructed 3-D networks of nanometer-sized thin fibers which facilitated gel formation in various aromatic organic solvents, even at very low concentrations. The loss of reflection peaks in the X-ray diffraction data indicated the reduction of strong interactions between the long alkyl chains as the Ag(I) carboxylates formed gels by maximizing their interactions with the organic solvents. The gelation temperature ($T_{gel}$) was measured to explore the interaction between the gelator molecules and solvents depending on their composition and concentration. Based on the gelation phenomena, a dissociation/re-association mechanism was proposed.

Development of Fabrication Process of Light Guiding Plate with Nanometer-Sized-Cylindrical Pattern Using Nano Imprint Lithography Method (나노 임프린트 리소그래피법에 의한 나노미터급 원기둥 패턴을 갖는 도광판의 제작 공정 개발)

  • Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.332-335
    • /
    • 2008
  • PMMA light guiding plate with nano pattern was fabricated by nano imprint lithography method. A silicon mold for electroplating of nickel was fabricated by conventional photolithography process. A nickel stamp for nano imprint lithography was fabricated by electroplating process using silicon mold. The nano imprint lithography was performed on PMMA plate at $140^{\circ}C$ under pressure of 20kN. The nano pattern on PMMA plate was investigated using FE-SEM. It is shown that the patterns were well transferred for several steps and the nano imprint lithography method could be applied for fabricating patterns of light guiding plate.

Bipolar Charge Distribution of Nano Particles Passing through the Dielectric Barrier Discharge Reactor (DBD(Dielectric Barrier Discharge)에 의해 하전된 나노입자의 양극성 대전량 분포)

  • Ji, Jun-Ho;Kang, Suk-Hoon;Byeon, Jung-Hoon;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1684-1689
    • /
    • 2003
  • Dielectric Barrier Discharges (DBD) in oxygen and air are well established for the production of large quantities of ozone and are more recently being applied to a wider range of after treatment processes for HAPs(Hazardous Air Pollutants). The potential use as a charger for particle collection are not well known. In this work, we measured charge distribution of nanometer or submicron sized particles passing through the dielectric barrier discharge reactor. The bipolar charge characteristics of particles passing DBD reactor were investigated. Fluorometric method using uranine particles and a fluorometer was employed to examine the bipolar charging characteristics of the charged particles by DBD reactor. Finally, the charge distributions of particles were determined from the electrical mobility classification using DMA.

  • PDF

Effect of elasticity of aqueous colloidal silica solution on chemical absorption of carbon dioxide with 2-amino-2-methyl-1-propanol

  • Park, Sang-Wook;Choi, Byoung-Sik;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.133-141
    • /
    • 2006
  • Carbon dioxide was absorbed into the aqueous nanometer sized colloidal silica solution of 0-31 wt% and 2-amino-2-methyl-1-propanol of $0-2kmol/m^3$ in a flat-stirred vessel with the impeller of various sizes and speeds at $25^{\circ}C$ and 0.101 MPa to measure the absorption rate of $CO_2$. The volumetric liquid-side mass transfer coefficient$(k_La)\;of\;CO_2$ was used to obtain the empirical correlation formula containing the rheological behavior of the aqueous colloidal silica solution. Reduction of the measured $k_La$ was explained by the viscoelastic properties of the aqueous colloidal silica solution. The theoretical value of the absorption rate of $CO_2$ was estimated from the model based on the film theory accompanied by chemical reaction and compared with the measured value.