Size Classification of Airborne Nanoparticles Using Electrically Tunable Virtual Impactor

전기적으로 분류 입경의 제어가 가능한 가상 임팩터을 이용한 대기 중 나노 입자의 분류

  • Published : 2009.02.25

Abstract

This paper reports the size classification of nanoparticles as well as electrical tuning techniques for the cut-off diameter and collection efficiency. Classifying particles < 100 nm in diameter is quite a technical challenge using a virtual impactor with the cut-off diameter being determined geometrically. However, the proposed virtual impactor can classify particles <100 nm and tune the cut-off diameter by electrically accelerating the particles. The cut-off diameter of the proposed device was tuned from 15 to 50nm.

Keywords

References

  1. Kittleson, D. B., "Engines and nanoparticles: a review," Journal of Aerosol Science, Vol. 29, No. 5, pp. 575-588, 1998 https://doi.org/10.1016/S0021-8502(97)10037-4
  2. Cox, C. S. and Wathes, C. M., "Bioaerosols Handbook," CRC Press, 1995
  3. Tam, B. N. and Neumann, C. M., "A human health assessment of hazardous air pollutants in Portland, OR," Journal of Environmental Management, Vol. 73, No. 2, pp. 131-145, 2004 https://doi.org/10.1016/j.jenvman.2004.06.012
  4. Hinds, W. C., "Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particle, 2nd ed.," John Wiley & Sons Inc., 1999
  5. Jacobson, M. Z., "Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols," Nature, Vol. 409, No. 6821, pp. 695-697, 2001 https://doi.org/10.1038/35055518
  6. Seinfeld, J. H. and Pandis, S. P., "Atmospheric chemistry and physics," John Wiley & Sons Inc., 1998
  7. Wilson, R. and Spengler, J. D., "Particles in our air: concentration and health effects," Harvard University Press, 1996
  8. Dockery, D. W., Pope, C. A., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G. and Speizer, F. E., "An association between air pollution and mortality in sixU.S. cities," The New England Journal of Medicine, Vol. 329, No. 24, pp. 1753-1759, 1993 https://doi.org/10.1056/NEJM199312093292401
  9. Kappos, A. D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Hoope, P., Koch, E., Krause, G. H. M., Kreyling, W. G., Rauchfuss, K., Rombout, P., Schulz-Klemp, V., Thiel, W. R. and Wichmann, H. -E., "Health effects of particles in ambient air," International Journal of Hygiene and Environmental Health, Vol. 207, No. 4, pp. 399-407, 2004 https://doi.org/10.1078/1438-4639-00306
  10. Englert, N., "Fine particles and human health- a review of epidemiological studies," Toxicology Letters, Vol. 149, Issues 1-3, pp. 235-242, 2004 https://doi.org/10.1016/j.toxlet.2003.12.035
  11. Heinrich, J. and Slama, R., "Fine particles, a major threat to children," International Journal of Hygiene and Environmental Health, Vol. 210, No. 5, pp. 617- 622, 2007 https://doi.org/10.1016/j.ijheh.2007.07.012
  12. Pekkanen, J., Timonen, K. L., Ruuskanen, J., Reponen, A. and Mirmes, A., "Effects of ultrafine and fine particles in urban air on peak expiratory flowamong children with asthmatic symptoms," Environmental Research, Vol. 74, No. 1, pp. 24-33, 1997 https://doi.org/10.1006/enrs.1997.3750
  13. Alessandrini, F., Schulz, H., Takenaka, S., Lentner, B., Karg, E., Bhrendt, H. and Jakob, T., "Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung," Journal of Allergy and Clinical Immunology, Vol. 117, No. 4, pp. 824-830, 2006 https://doi.org/10.1016/j.jaci.2005.11.046
  14. Neas, L. M., "Fine particulate matter and cardiovascular disease," Fuel Processing Technology, Vol. 65-66, pp. 55-67, 2000 https://doi.org/10.1016/S0378-3820(99)00076-4
  15. Konaldson, K., Li, X. Y. and MacNee, W., "Ultrafine (nanometer) particle mediated lung injury," Journal of Aerosol Science, Vol. 29, No. 5, pp. 553-560, 1998 https://doi.org/10.1016/S0021-8502(97)00464-3
  16. Baron, P. A. and Willeke, K., "Aerosol Measurement, 2nd ed.," John Wiley & Sons Inc., 2001
  17. Lim, H. H., Park, D., Maeng, J. Y., Hwang, J. and Kim, Y. J., "MEMS based integrated particle detection chip for real time environmental monitoring," The 19th IEEE MEMS International Conference, pp. 62-65, 2006
  18. Maeng, J. Y., Park, D., Kim, Y. H., Hwang, J. and Kim, Y. J., "Micromachined cascade virtual impactor for aerodynamic size classification of airborne particles," The 20th IEEE MEMS International Conference, pp. 619-622, 2007
  19. Kim, Y. H., Maeng, J. Y., Park, D., Hwang, J. and Kim, Y. J., "A micromachined cascade virtual impactor with a flow rate distributor for wide range airborne particle classification," Applied Physics Letters, Vol. 91, No. 4, 043512, 2007 https://doi.org/10.1063/1.2763975
  20. Lee, P., Chen, D. and Pui, D. Y. H., "Experimental study of a Nanoparticle virtual impactor," Journal of Nanoparticle Research, Vol. 5, No. 3-4, pp. 269-280, 2003 https://doi.org/10.1023/A:1025538930994
  21. Hauglund, J. S. and McFarland, A. R., "A circumferential slot virtual impactor," Aerosol Science Technology, Vol. 38, No. 7, pp. 664-674, 2004 https://doi.org/10.1080/02786820490486015
  22. Demokritou, P., Lee, S. J. and Koutrakis, P., "Development and Evaluation of a High Loading PM2.5 Speciation Sampler," Aerosol Science Technology, Vol. 38, No. 2, pp. 111-119, 2004 https://doi.org/10.1080/02786820490249045