• 제목/요약/키워드: nanofiber structure

Search Result 92, Processing Time 0.027 seconds

Preparation of PVdF Composite Nanofiber Membrane by Using Manganese-Iron Oxide and Characterization of its Arsenic Removal (망간-철 산화물을 이용한 PVdF 나노섬유복합막의 제조 및 비소 제거 특성 평가)

  • Yun, Jaehan;Jang, Wongi;Park, Yeji;Lee, Junghun;Byun, Hongsik
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.116-125
    • /
    • 2016
  • This study described a synthesis of MF having a arsenic removal characteristics and the fundamental research was performed about the simultaneous removal system of both As(III) and As(V) ions with the composite nanofiber membrane (PMF) based on PVdF and MF materials for the water-treatment application. From the TEM analysis, the shape and structure of MF materials was investigated. The mechanical strength, pore-size, contact angle and water-flux analysis for the PMF was performed to investigate the possibility of utilizing as a water treatment membrane. From these results, the PMF11 showed the highest value of mechanical strength ($232.7kgf/cm^2$) and the pore-diameter of composite membrane was reduced by introducing the MF materials. In particular, their pore diameter decreased with an increase of iron oxide composition ratio. The water flux value of PMF was improved about 10 to 60% compared with that of neat PVdF nanofiber membranes. From the arsenic removal characterization of prepared MF materials and PMF, it was shown the simultaneous removal characteristics of both As(III) and (V) ions, and the MF01, in particular, showed the highest adsorption-removal rate of 93% As(III) and 68% As(V), respectively. From these results, prepared MF materials and PMF have shown a great potential to be utilized for the fundamental study to improve the functionality of water treatment membrane.

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments (극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구)

  • Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.

Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application (전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체)

  • Yang, Kap Seung;Kim, Bo Hye
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.239-246
    • /
    • 2015
  • The hybridization of carbon nano-materials enhances the efficiency of each function of the resulting structure or composites. Also, the addition of non-carbon elements to nanomaterials modifies the electrochemical properties. Electrodes combining porous carbon nanofibers (CNFs) and metal oxides benefit from the combination of the double-layer capacitance of the CNFs and the pseudocapacitive character associated with the surface redox-type reactions. Consequently, they demonstrate superior supercapacitor performance in terms of high capacitance, high energy/power efficiency and high rate capability. This paper presents a comprehensive review of the latest advances made in the development and application of various metal oxide/CNF composites (CNFCs) to supercapacitor electrodes.

Electrospun Tin Oxide Nanofibers with a Controlled Diameter and Morphology (전기방사된 주석산화물 나노섬유의 공정 변수에 따른 직경 및 형상 제어 연구)

  • Jang, Dae-Hwan;Lee, Jae-Eun;Choa, Yong-Ho;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.663-670
    • /
    • 2014
  • Diameter-controlled tin oxide nanofibers have been successfully prepared using electrospinning and a subsequent calcination process; their diameters, morphologies, and crystal structures have been characterized. The diameters of the as-spun nanofibers can be decreased by lowering the concentration of a polymer and a tin precursor in the electrospinning solution because of the decrease in the solution viscosity. The crystal structure of the nanofibers calcined at various temperatures from $200^{\circ}C$ to $800^{\circ}C$ has been proved to be the tetragonal rutile of tin oxide; crystallinity is improved by increasing the temperature. However, nanofibers with lower concentrations of tin precursor do not maintain their fibrous structures after calcination at high temperatures. In this study, the effect of the relationship between the precursor concentration and the calcination temperature on the diameter and the morphology of the tin oxide nanofiber has been systematically investigated and discussed.

Fabrication of WS2-W-WC Embedded Carbon Nanofiber Composites for Supercapacitors (슈퍼 커패시터를 위한 WS2-W-WC가 내장된 탄소나노섬유 복합체의 제조)

  • Lee, Yu-Jin;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.116-121
    • /
    • 2015
  • $WS_2$-W-WC embedded carbon nanofiber composites were fabricated by using electrospinning method for use in high-performance supercapacitors. In order to obtain optimum electrochemical properties for supercapacitors, $WS_2$ nanoparticles were used as precursors and the amounts of $WS_2$ precursors were controlled to 4 wt% (sample A) and 8 wt% (sample B). The morphological, structural, and chemical properties of all samples were investigated by means of field emission photoelectron spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. These results demonstrated that the embedded phases of samples A and B were changed from $WS_2$ to $WS_2$-W-WC through carbothermal reaction during carbonization process. In particular, sample B presented high specific capacitance (~119.7 F/g at 5 mV/s), good high-rate capacitance (~60.5%), and superb cycleability. The enhanced electrochemical properties of sample B were explained by the synergistic effect of the using 1-D structure supports, increase of specific surface area, and improved conductivity from formation of W and WC phases.

Structural and Spectroscopic Investigation of Ceria Nanofibers Fabricated by Electrospinning Process

  • Hwang, Ah-Reum;Park, Ju-Yun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3338-3342
    • /
    • 2011
  • We fabricated ceria ($CeO_2$) nanofibers by applying a mixed solution of polyvinylpyrrolidone (PVP) and various concentrations of cerium nitrate hydrate ($Ce(NO_3)_3$) ranging from 15.0 to 26.0 wt % by the electrospinning process. Ceria nanofibers were obtained after calcining PVP/$Ce(NO_3)_3$ nanofiber composites at 873 and 1173 K. The SEM images indicated that the diameters of $CeO_2$ nanofibers calcined at 873 and 1173 K were smaller than those of nanofibers obtained at RT. As the amount of cerium increased, the diameter of $CeO_2$ nanofibers increased. XRD analysis revealed that the ceria nanofibers were in cubic form. TEM results revealed that the ceria nanofibers were formed by the interconnection of Ce oxide nanoparticles. The ceria nanofibers obtained at low concentrations of Ce (CeL) showed spotty ring patterns indicated that the ceria nanofibers were polycrystalline structure. And the ceria nanofibers obtained at high concentration of Ce (CeH) showed fcc (001) diffraction pattern. XPS study indicated that the oxidation of Ce shifted from $Ce^{3+}$ to $Ce^{4+}$ as the calcination temperature increased.

Nondestructive Damage Sensitivity for Functionalized Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Acoustic Emission (전기저항 측정과 음향방출을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.42-45
    • /
    • 2003
  • Nondestructive damage sensing and mechanical properties for acid-treated carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites were investigated using electro-micromechanical technique and acoustic emission (AE). Carbon black (CB) was used to compare to CNT and CNF. The results were compared to the untreated case. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity under double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. For surface treatment case, the damage sensitivity and reinforcing effect were higher than those of the untreated case. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF