DOI QR코드

DOI QR Code

Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application

전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체

  • Yang, Kap Seung (Department of Polymer Engineering, Graduate School, Chonnam National University) ;
  • Kim, Bo Hye (Division of Science Education, Daegu University)
  • 양갑승 (전남대학교 고분자융합소재공학부) ;
  • 김보혜 (대구대학교 과학교육학부 화학교육전공)
  • Received : 2015.05.19
  • Published : 2015.06.10

Abstract

The hybridization of carbon nano-materials enhances the efficiency of each function of the resulting structure or composites. Also, the addition of non-carbon elements to nanomaterials modifies the electrochemical properties. Electrodes combining porous carbon nanofibers (CNFs) and metal oxides benefit from the combination of the double-layer capacitance of the CNFs and the pseudocapacitive character associated with the surface redox-type reactions. Consequently, they demonstrate superior supercapacitor performance in terms of high capacitance, high energy/power efficiency and high rate capability. This paper presents a comprehensive review of the latest advances made in the development and application of various metal oxide/CNF composites (CNFCs) to supercapacitor electrodes.

나노 탄소재료를 복합화하면 기존 재료의 특성을 유지하면서 그 효율을 극대화할 수 있다. 여기에 이종원소를 부가하면 전기화학적인 특성이 디자인되므로, 나노 탄소재료의 복합화를 통해 한 종류의 나노 재료로부터 여러 강점을 얻을 수 있다. 특히 탄소나노섬유와 금속산화물을 복합화하면 탄소나노섬유의 전기이중층 뿐만 아니라 금속산화물의 산화 환원 반응을 이용하여 비축전 용량, 고율 특성, 수명 특성이 향상되고 높은 수준의 출력밀도가 유지되는 고용량 슈퍼 캐퍼시터용 전극 소재를 개발할 수 있다. 본 총설에서는 탄소의 고출력특성과 금속산화물의 고에너지 특성이 동시에 발현되는 금속산화물계 탄소나노섬유복합체의 제법과 응용에 대한 최신연구를 다루도록 하겠다.

Keywords

References

  1. M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev., 104, 4245-4269 (2004). https://doi.org/10.1021/cr020730k
  2. A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon, and W. V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4, 366-377 (2005). https://doi.org/10.1038/nmat1368
  3. Y. Guo, J. Hu, and L. Wan, Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices, Adv. Mater., 20, 2878-2887 (2008). https://doi.org/10.1002/adma.200800627
  4. H. Wang, H. S. Casalongue, Y. Liang, and H. Dai, $Ni(OH)_2$ nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc., 132, 7472-7477 (2010). https://doi.org/10.1021/ja102267j
  5. J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, and Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors, Science, 328, 480-483 (2010). https://doi.org/10.1126/science.1184126
  6. J. R. Miller, R. A. Outlaw, and B. C. Holloway, Graphene double-layer capacitor withac line-filtering performance, Science, 329, 1637-1369 (2010). https://doi.org/10.1126/science.1194372
  7. Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, S. Dong, A. S. Eric, and S. R. Rodney, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537-1541 (2011). https://doi.org/10.1126/science.1200770
  8. A. Izadi-Najafabadi, T. Yamada, D. N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima, and K. Hata, High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite, ACS Nano, 5, 811-819 (2011). https://doi.org/10.1021/nn1017457
  9. M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326-1330 (2012). https://doi.org/10.1126/science.1216744
  10. A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11-27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  11. A. Nishino, Capacitors: operating principles, current market and technical trends, J. Power Sources, 60, 137-147 (1990).
  12. C. Lei, P. Wilson, and C. Lekakou, Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors, J. Power Sources, 196, 7823-7827 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.070
  13. J. P. Zheng, Ruthenium Oxide Carbon Composite Electrodes for Electrochemical Capacitors, Electrochem. Solid-State Lett., 2, 359-361 (1999). https://doi.org/10.1149/1.1390837
  14. E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937-950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  15. M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, and M. S. Dresselhaus, Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes, J. Electrochem. Soc., 148, A910-A914 (2001). https://doi.org/10.1149/1.1382589
  16. H. Teng, Y. Chang, and C. T. Hsieh, Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching, Carbon, 39, 1981-1987 (2001). https://doi.org/10.1016/S0008-6223(01)00027-6
  17. C. T. Hsieh and H. Teng, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40, 667-674 (2002). https://doi.org/10.1016/S0008-6223(01)00182-8
  18. J. S. Ye, H. F. Cui, X. Liu, T. M. Lim, W. D. Zhang, and F. S. Sheu, Preparation and Characterization of Aligned Carbon Nanotube-Ruthenium Oxide Nanocomposites for Supercapacitors, Small, 1, 560-565 (2005). https://doi.org/10.1002/smll.200400137
  19. Y. G. Wang, H. Q. Li, and Y. Y. Xia, Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance, Adv. Mater., 18, 2619-2623 (2006). https://doi.org/10.1002/adma.200600445
  20. C. Zheng, L. Qi, M. Yoshio, and H. Wang, Cooperation of microand mesoporous carbon electrode materials in electric double-layer capacitors, J. Power Sources, 195, 4406-4409 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.041
  21. J. Jiang, Q. Gao, K. Xia, and J. Hu, Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore structure, Microporous Mesoporous Mater., 118, 28-34 (2009). https://doi.org/10.1016/j.micromeso.2008.08.011
  22. A. B. Fuertes, G. Lota, T. A. Centeno, and E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 50, 2799-2805 (2005). https://doi.org/10.1016/j.electacta.2004.11.027
  23. K.-P. Wang and H. Teng, The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 44, 3218-3225 (2006). https://doi.org/10.1016/j.carbon.2006.06.031
  24. W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu, X. Qian, D. Gu, Y. Xia, B. Tu, and D. Zhao, A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes, Adv. Energy Mater., 1, 382-386 (2011). https://doi.org/10.1002/aenm.201000096
  25. Z. Ryu, J. Zheng, and M. Wang, Porous structure of PAN-based activated carbon fibers, Carbon, 36, 427-432 (1998). https://doi.org/10.1016/S0008-6223(97)00225-X
  26. L. Marcinauskas, Z. Kavaliauskas, and V. Valincius, Carbon and nickel oxide/carbon composites as electrodes for supercapacitors, J. Mater. Technol., 28, 931-936 (2012). https://doi.org/10.1016/S1005-0302(12)60153-4
  27. A. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11-17 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  28. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrog. Energy, 34, 4889-4899 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
  29. T. Kwon, H. Nishihara, H. Itoi, Q. H. Yang, and T. Kyotani, Enhancement Mechanism of Electrochemical Capacitance in Nitrogen-/Boron-Doped Carbons with Uniform Straight Nanochannels, Langmuir, 25, 11961-11968 (2009). https://doi.org/10.1021/la901318d
  30. R. B. Rakhi and H. N. Alshareef, Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes, J. Power Sources, 196, 8858-8865 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.038
  31. I. Shakir, M. Nadeem, M. Shahid, and D. J. Kang, Ultra-thin Solution-based coating of Molybdenum Oxide on Multiwall Carbon Nanotubes for High-performance Supercapacitor Electrodes, Electrochim. Acta, 118, 138-142 (2014). https://doi.org/10.1016/j.electacta.2013.11.135
  32. T. Battumur, S. B. Ambade, R. B. Ambade, P. Pokharel, D. S. Lee, S.-H. Han, W. Lee, and S.-H. Lee, Addition of multiwalled carbon nanotube and graphene nanosheet in cobalt oxide film for enhancement of capacitance in electrochemical capacitors, Curr. Appl. Phys., 13, 196-204 (2013). https://doi.org/10.1016/j.cap.2012.07.009
  33. W. J. Morton, Method of dispersing fluids, UNITED STATES PATENT, N0. 705,691 (1902).
  34. C. Kim, K. H. An, Y. H. Lee, and K. S. Yang, Nanocomposite fiber, its preparation and use, Korean Patent 10-2004-0088578 (in Korean) (2004).
  35. S. F. Fennessey and R. J. Farris, Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns, Polymer, 45, 4217-4225 (2004). https://doi.org/10.1016/j.polymer.2004.04.001
  36. C. Shao, H. Y. Kim, J. Gong, B, Ding, D. R. Lee, and S. J. Park, Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning, Mater. Lett., 57, 1579-1584 (2003). https://doi.org/10.1016/S0167-577X(02)01036-4
  37. A. Holzmeister, M. Rudisile, A. Greiner, and J. H. Wendorff, Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning, Eur. Polym. J., 43, 4859-4867 (2007). https://doi.org/10.1016/j.eurpolymj.2007.09.014
  38. Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, Humidity sensing properties of $BaTiO_3$ nanofiber prepared via electrospinning, Sen. Actuat. B: Chem., 146, 98-102 (2010). https://doi.org/10.1016/j.snb.2010.02.030
  39. J. T. McCann, M. Marquez, and Y. Xia, Highly Porous Fibers by Electrospinning into a Cryogenic Liquid, J. Am. Chem. Soc., 128, 1436-1437 (2006). https://doi.org/10.1021/ja056810y
  40. E. J. Ra, T. H. Kim, W. J. Yu, K. H. An, and Y. H. Lee, Ultramicropore formation in PAN/camphor-based carbon nanofiber paper, Chem. Commun., 46, 1320-1322 (2010). https://doi.org/10.1039/b919055d
  41. C. Kim and K. S. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Appl. Phys. Lett., 83, 1216-1218 (2003). https://doi.org/10.1063/1.1599963
  42. K. Xia, Q. Gao, J. Jiang, and J. Hu, Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials, Carbon, 46, 1718-1726 (2008). https://doi.org/10.1016/j.carbon.2008.07.018
  43. J. L. Hu, J. H. Huang, Y. K. Chih, C. C. Chuang, J. P. Chen, S. H. Cheng, and J. L. Horng, Effects of thermal treatments on the supercapacitive performances of PAN-based carbon fiber electrodes, Diam. Relat. Mater., 18, 511-521 (2009). https://doi.org/10.1016/j.diamond.2008.10.025
  44. Y.-W. Ju, G.-R. Choi, H.-R. Jung, and W.-J. Lee, Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole, Electrochim. Acta, 53, 5796-5803 (2008). https://doi.org/10.1016/j.electacta.2008.03.028
  45. H. Wang, Q. Gao, and J. Hu, Preparation of porous doped carbons and the high performance in electrochemical capacitors, Microporous Mesoporous Mater., 131, 89-96 (2010). https://doi.org/10.1016/j.micromeso.2009.12.007
  46. C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogosti, and P. Simon, Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, J. Am. Chem. Soc., 130, 2730-2731 (2008). https://doi.org/10.1021/ja7106178
  47. K.-P. Wang and H. Teng, The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 44, 3218-3225 (2006). https://doi.org/10.1016/j.carbon.2006.06.031
  48. J. Fan, T. Wang, C. Z. Yu, B. Tu, Z. Jiang, and D. Zhao, Ordered, nanostructured tin based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv Mater., 16, 1432-1436 (2004). https://doi.org/10.1002/adma.200400106
  49. L. Shi, H. He, Y. Fang, Y. Jia, B. Luo, and L. Zhi, Effect of heating rate on the electrochemical performance of $MnO_X@CNF$ nanocomposites as supercapacitor electrodes, Chin. Sci. Bull., 59, 1832-1837 (2014). https://doi.org/10.1007/s11434-014-0294-6
  50. M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors, J. Electrochem. Soc., 148, A374-A380 (2001). https://doi.org/10.1149/1.1357172
  51. C.-M. Chuang, C.-W. Huang, H. Teng, and J.-M. Ting, Hydrothermally synthesized $RuO_2$/Carbon nanofibers composites for use in high-rate supercapacitor electrodes, Compos. Sci. Technol., 72, 1524-1529 (2012). https://doi.org/10.1016/j.compscitech.2012.05.024
  52. B. J. Lee, S. R. Sivakkumar, J. M. Ko, J. H. Kim, S. M. Jo, and D. Y. Kim, Carbon nanofibre/hydrous $RuO_2$ nanocomposite electrodes for supercapacitors, J. Power Sources, 168, 546-552 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.076
  53. Y.-W. Ju, G.-R. Choi, H.-R. Jung, C. Kim, K.-S. Yang, and W.-J. Lee, Structure and electrochemistry of $LiNi_{1/3}Co_{{1/3}{\cdot}{y}}M_yMn_{1/3}O_2$ (M=Ti, Al, Fe) positive electrode material, J. Electrochem Soc., 154, A192-A198 (2007). https://doi.org/10.1149/1.2426898
  54. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, and J. Shi, $MnO_2$-Embedded-in-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors, J. Phys. Chem. B, 110, 6015-6019 (2006). https://doi.org/10.1021/jp056754n
  55. M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu, and L. Chen, Development of $MnO_2$/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A, 2, 2555-2562 (2014). https://doi.org/10.1039/c3ta14445c
  56. T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe, and K. Kajita, Amorphous $V_2O_5$/carbon composites as electrochemical supercapacitor electrodes, Solid State Ionics, 152, 833-841 (2002).
  57. G. X. Wang, B. L. Zhang, Z. L. Yu, and M. Z. Qu, Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ionics, 176, 1169-1174 (2005). https://doi.org/10.1016/j.ssi.2005.02.005
  58. S. Suzuki, M. Hibino, and M. Miyayama, High rate lithium intercalation properties of $V_2O_5$/carbon/ceramic-filler composites, J. Power Sources, 124, 513-517 (2003). https://doi.org/10.1016/S0378-7753(03)00769-9
  59. A. Dobley, K. Ngala, S. Yang, P. Y. Zavalij, and M. S. Whittingham, Manganese Vanadium Oxide Nanotubes: Synthesis, Characterization, and Electrochemistry, Chem. Mater., 13, 4382-4386 (2001). https://doi.org/10.1021/cm010518h
  60. J. S. Sakamoto and B. Dunn, Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries, J. Electrochem. Soc., 149, A26-A30 (2002). https://doi.org/10.1149/1.1425791
  61. K. W. Nam, E. S. Lee, J. H. Kim, Y. H. Lee, and K. B. Kim, Synthesis and electrochemical investigations of $Ni_{1-x}O$ thin films and $Ni_{1-x}O$ on three-dimensional carbon substrates for electrochemical capacitors batteries, fuel cells, and energy conversion, J. Electrochem. Soc., 152, A2123-A2129 (2005). https://doi.org/10.1149/1.2039647
  62. I. H. Kim, J. H. Kim, and K. B. Kim, Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application, Electrochem. Solid-State Lett., 8, A369-A372 (2005). https://doi.org/10.1149/1.1925067
  63. B.-H. Kim, C. H. Kim, K. S. Yang, A. Rahy, and D. J. Yang, Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes, Electrochim. Acta, 83, 335-340 (2012). https://doi.org/10.1016/j.electacta.2012.07.093
  64. B.-H. Kim, K. S. Yang, and D. J. Yang, Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors, Electrochim. Acta, 109, 859-865 (2013). https://doi.org/10.1016/j.electacta.2013.07.180
  65. M. Sathiya, A. S. Prakash, K. Ramesha, J. M. Tarascon, and A. K. Shukla, $V_2O_5$-Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage, J. Am. Chem. Soc., 133, 16291-16299 (2011). https://doi.org/10.1021/ja207285b
  66. H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, and T. Kudo, Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores, J. Phys. Chem. C, 111, 227-233 (2007).
  67. S. W. Woo, K. Dokko, H. Nakano, and K. Kanamura, Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors, J. Mater. Chem., 18, 1674-1680 (2008). https://doi.org/10.1039/b717996k
  68. D. W. Wang, F. Li, M. Liu, G. Q. Lu, and H. M. Cheng, 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage, Angew. Chem. Int. Edit., 47, 373-376 (2008). https://doi.org/10.1002/anie.200702721
  69. M. Selvakumar, D. K. Bhat, A. M. Aggarwal, S. P. Iyer, and G. Sravani, Nano ZnO activated carbon composite electrodes for supercapacitors, Phys. B, 405, 2286-2289 (2010). https://doi.org/10.1016/j.physb.2010.02.028
  70. L. S. Aravindaa, K. K. Nagarajab, H. S. Nagarajab, K. U. Bhat, and B. R. Bhat, ZnO/carbon nanotube nanocomposite for high energy density supercapacitors, Electrochim. Acta, 95, 119-124 (2013). https://doi.org/10.1016/j.electacta.2013.02.027
  71. Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun, C. Sun, and B. K. Tay, Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors, Solid State Ionics, 180, 1525-1528 (2009). https://doi.org/10.1016/j.ssi.2009.10.001
  72. D. Kalpana, K. S. Omkumar, S. S. Kumar, and N. G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor, Electrochim. Acta, 52, 1309-1315 (2006). https://doi.org/10.1016/j.electacta.2006.07.032
  73. C. H. Kim and B.-H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes, J. Power Sources, 274, 512-520 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.126
  74. C. H. Kim and B.-H. Kim, Electrochemical behavior of zinc oxide-based porous carbon composite nanofibers as an electrode for electrochemical capacitors, J. Electro. Chem., 730, 1-9 (2014). https://doi.org/10.1016/j.jelechem.2014.07.014
  75. J. Mu, C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang, B. Chen, and Y. Liu, High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures, ACS Appl. Mater. Interfaces, 3, 590-596 (2011). https://doi.org/10.1021/am101171a
  76. S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, and X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano, 4, 2822-2830 (2010). https://doi.org/10.1021/nn901311t

Cited by

  1. Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance vol.7, pp.2, 2016, https://doi.org/10.1002/aenm.201601301
  2. High conductivity electrospun carbon/graphene composite nanofiber yarns pp.00323888, 2017, https://doi.org/10.1002/pen.24643