References
- M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev., 104, 4245-4269 (2004). https://doi.org/10.1021/cr020730k
- A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon, and W. V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4, 366-377 (2005). https://doi.org/10.1038/nmat1368
- Y. Guo, J. Hu, and L. Wan, Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices, Adv. Mater., 20, 2878-2887 (2008). https://doi.org/10.1002/adma.200800627
-
H. Wang, H. S. Casalongue, Y. Liang, and H. Dai,
$Ni(OH)_2$ nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc., 132, 7472-7477 (2010). https://doi.org/10.1021/ja102267j - J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, and Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors, Science, 328, 480-483 (2010). https://doi.org/10.1126/science.1184126
- J. R. Miller, R. A. Outlaw, and B. C. Holloway, Graphene double-layer capacitor withac line-filtering performance, Science, 329, 1637-1369 (2010). https://doi.org/10.1126/science.1194372
- Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, S. Dong, A. S. Eric, and S. R. Rodney, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537-1541 (2011). https://doi.org/10.1126/science.1200770
- A. Izadi-Najafabadi, T. Yamada, D. N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima, and K. Hata, High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite, ACS Nano, 5, 811-819 (2011). https://doi.org/10.1021/nn1017457
- M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326-1330 (2012). https://doi.org/10.1126/science.1216744
- A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11-27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
- A. Nishino, Capacitors: operating principles, current market and technical trends, J. Power Sources, 60, 137-147 (1990).
- C. Lei, P. Wilson, and C. Lekakou, Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors, J. Power Sources, 196, 7823-7827 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.070
- J. P. Zheng, Ruthenium Oxide Carbon Composite Electrodes for Electrochemical Capacitors, Electrochem. Solid-State Lett., 2, 359-361 (1999). https://doi.org/10.1149/1.1390837
- E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937-950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
- M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, and M. S. Dresselhaus, Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes, J. Electrochem. Soc., 148, A910-A914 (2001). https://doi.org/10.1149/1.1382589
- H. Teng, Y. Chang, and C. T. Hsieh, Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching, Carbon, 39, 1981-1987 (2001). https://doi.org/10.1016/S0008-6223(01)00027-6
- C. T. Hsieh and H. Teng, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40, 667-674 (2002). https://doi.org/10.1016/S0008-6223(01)00182-8
- J. S. Ye, H. F. Cui, X. Liu, T. M. Lim, W. D. Zhang, and F. S. Sheu, Preparation and Characterization of Aligned Carbon Nanotube-Ruthenium Oxide Nanocomposites for Supercapacitors, Small, 1, 560-565 (2005). https://doi.org/10.1002/smll.200400137
- Y. G. Wang, H. Q. Li, and Y. Y. Xia, Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance, Adv. Mater., 18, 2619-2623 (2006). https://doi.org/10.1002/adma.200600445
- C. Zheng, L. Qi, M. Yoshio, and H. Wang, Cooperation of microand mesoporous carbon electrode materials in electric double-layer capacitors, J. Power Sources, 195, 4406-4409 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.041
- J. Jiang, Q. Gao, K. Xia, and J. Hu, Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore structure, Microporous Mesoporous Mater., 118, 28-34 (2009). https://doi.org/10.1016/j.micromeso.2008.08.011
- A. B. Fuertes, G. Lota, T. A. Centeno, and E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 50, 2799-2805 (2005). https://doi.org/10.1016/j.electacta.2004.11.027
- K.-P. Wang and H. Teng, The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 44, 3218-3225 (2006). https://doi.org/10.1016/j.carbon.2006.06.031
- W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu, X. Qian, D. Gu, Y. Xia, B. Tu, and D. Zhao, A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes, Adv. Energy Mater., 1, 382-386 (2011). https://doi.org/10.1002/aenm.201000096
- Z. Ryu, J. Zheng, and M. Wang, Porous structure of PAN-based activated carbon fibers, Carbon, 36, 427-432 (1998). https://doi.org/10.1016/S0008-6223(97)00225-X
- L. Marcinauskas, Z. Kavaliauskas, and V. Valincius, Carbon and nickel oxide/carbon composites as electrodes for supercapacitors, J. Mater. Technol., 28, 931-936 (2012). https://doi.org/10.1016/S1005-0302(12)60153-4
- A. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11-17 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
- Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrog. Energy, 34, 4889-4899 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
- T. Kwon, H. Nishihara, H. Itoi, Q. H. Yang, and T. Kyotani, Enhancement Mechanism of Electrochemical Capacitance in Nitrogen-/Boron-Doped Carbons with Uniform Straight Nanochannels, Langmuir, 25, 11961-11968 (2009). https://doi.org/10.1021/la901318d
- R. B. Rakhi and H. N. Alshareef, Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes, J. Power Sources, 196, 8858-8865 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.038
- I. Shakir, M. Nadeem, M. Shahid, and D. J. Kang, Ultra-thin Solution-based coating of Molybdenum Oxide on Multiwall Carbon Nanotubes for High-performance Supercapacitor Electrodes, Electrochim. Acta, 118, 138-142 (2014). https://doi.org/10.1016/j.electacta.2013.11.135
- T. Battumur, S. B. Ambade, R. B. Ambade, P. Pokharel, D. S. Lee, S.-H. Han, W. Lee, and S.-H. Lee, Addition of multiwalled carbon nanotube and graphene nanosheet in cobalt oxide film for enhancement of capacitance in electrochemical capacitors, Curr. Appl. Phys., 13, 196-204 (2013). https://doi.org/10.1016/j.cap.2012.07.009
- W. J. Morton, Method of dispersing fluids, UNITED STATES PATENT, N0. 705,691 (1902).
- C. Kim, K. H. An, Y. H. Lee, and K. S. Yang, Nanocomposite fiber, its preparation and use, Korean Patent 10-2004-0088578 (in Korean) (2004).
- S. F. Fennessey and R. J. Farris, Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns, Polymer, 45, 4217-4225 (2004). https://doi.org/10.1016/j.polymer.2004.04.001
- C. Shao, H. Y. Kim, J. Gong, B, Ding, D. R. Lee, and S. J. Park, Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning, Mater. Lett., 57, 1579-1584 (2003). https://doi.org/10.1016/S0167-577X(02)01036-4
- A. Holzmeister, M. Rudisile, A. Greiner, and J. H. Wendorff, Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning, Eur. Polym. J., 43, 4859-4867 (2007). https://doi.org/10.1016/j.eurpolymj.2007.09.014
-
Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, Humidity sensing properties of
$BaTiO_3$ nanofiber prepared via electrospinning, Sen. Actuat. B: Chem., 146, 98-102 (2010). https://doi.org/10.1016/j.snb.2010.02.030 - J. T. McCann, M. Marquez, and Y. Xia, Highly Porous Fibers by Electrospinning into a Cryogenic Liquid, J. Am. Chem. Soc., 128, 1436-1437 (2006). https://doi.org/10.1021/ja056810y
- E. J. Ra, T. H. Kim, W. J. Yu, K. H. An, and Y. H. Lee, Ultramicropore formation in PAN/camphor-based carbon nanofiber paper, Chem. Commun., 46, 1320-1322 (2010). https://doi.org/10.1039/b919055d
- C. Kim and K. S. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Appl. Phys. Lett., 83, 1216-1218 (2003). https://doi.org/10.1063/1.1599963
- K. Xia, Q. Gao, J. Jiang, and J. Hu, Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials, Carbon, 46, 1718-1726 (2008). https://doi.org/10.1016/j.carbon.2008.07.018
- J. L. Hu, J. H. Huang, Y. K. Chih, C. C. Chuang, J. P. Chen, S. H. Cheng, and J. L. Horng, Effects of thermal treatments on the supercapacitive performances of PAN-based carbon fiber electrodes, Diam. Relat. Mater., 18, 511-521 (2009). https://doi.org/10.1016/j.diamond.2008.10.025
- Y.-W. Ju, G.-R. Choi, H.-R. Jung, and W.-J. Lee, Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole, Electrochim. Acta, 53, 5796-5803 (2008). https://doi.org/10.1016/j.electacta.2008.03.028
- H. Wang, Q. Gao, and J. Hu, Preparation of porous doped carbons and the high performance in electrochemical capacitors, Microporous Mesoporous Mater., 131, 89-96 (2010). https://doi.org/10.1016/j.micromeso.2009.12.007
- C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogosti, and P. Simon, Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, J. Am. Chem. Soc., 130, 2730-2731 (2008). https://doi.org/10.1021/ja7106178
- K.-P. Wang and H. Teng, The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 44, 3218-3225 (2006). https://doi.org/10.1016/j.carbon.2006.06.031
- J. Fan, T. Wang, C. Z. Yu, B. Tu, Z. Jiang, and D. Zhao, Ordered, nanostructured tin based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv Mater., 16, 1432-1436 (2004). https://doi.org/10.1002/adma.200400106
-
L. Shi, H. He, Y. Fang, Y. Jia, B. Luo, and L. Zhi, Effect of heating rate on the electrochemical performance of
$MnO_X@CNF$ nanocomposites as supercapacitor electrodes, Chin. Sci. Bull., 59, 1832-1837 (2014). https://doi.org/10.1007/s11434-014-0294-6 - M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors, J. Electrochem. Soc., 148, A374-A380 (2001). https://doi.org/10.1149/1.1357172
-
C.-M. Chuang, C.-W. Huang, H. Teng, and J.-M. Ting, Hydrothermally synthesized
$RuO_2$ /Carbon nanofibers composites for use in high-rate supercapacitor electrodes, Compos. Sci. Technol., 72, 1524-1529 (2012). https://doi.org/10.1016/j.compscitech.2012.05.024 -
B. J. Lee, S. R. Sivakkumar, J. M. Ko, J. H. Kim, S. M. Jo, and D. Y. Kim, Carbon nanofibre/hydrous
$RuO_2$ nanocomposite electrodes for supercapacitors, J. Power Sources, 168, 546-552 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.076 -
Y.-W. Ju, G.-R. Choi, H.-R. Jung, C. Kim, K.-S. Yang, and W.-J. Lee, Structure and electrochemistry of
$LiNi_{1/3}Co_{{1/3}{\cdot}{y}}M_yMn_{1/3}O_2$ (M=Ti, Al, Fe) positive electrode material, J. Electrochem Soc., 154, A192-A198 (2007). https://doi.org/10.1149/1.2426898 -
X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, and J. Shi,
$MnO_2$ -Embedded-in-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors, J. Phys. Chem. B, 110, 6015-6019 (2006). https://doi.org/10.1021/jp056754n -
M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu, and L. Chen, Development of
$MnO_2$ /porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A, 2, 2555-2562 (2014). https://doi.org/10.1039/c3ta14445c -
T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe, and K. Kajita, Amorphous
$V_2O_5$ /carbon composites as electrochemical supercapacitor electrodes, Solid State Ionics, 152, 833-841 (2002). - G. X. Wang, B. L. Zhang, Z. L. Yu, and M. Z. Qu, Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ionics, 176, 1169-1174 (2005). https://doi.org/10.1016/j.ssi.2005.02.005
-
S. Suzuki, M. Hibino, and M. Miyayama, High rate lithium intercalation properties of
$V_2O_5$ /carbon/ceramic-filler composites, J. Power Sources, 124, 513-517 (2003). https://doi.org/10.1016/S0378-7753(03)00769-9 - A. Dobley, K. Ngala, S. Yang, P. Y. Zavalij, and M. S. Whittingham, Manganese Vanadium Oxide Nanotubes: Synthesis, Characterization, and Electrochemistry, Chem. Mater., 13, 4382-4386 (2001). https://doi.org/10.1021/cm010518h
- J. S. Sakamoto and B. Dunn, Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries, J. Electrochem. Soc., 149, A26-A30 (2002). https://doi.org/10.1149/1.1425791
-
K. W. Nam, E. S. Lee, J. H. Kim, Y. H. Lee, and K. B. Kim, Synthesis and electrochemical investigations of
$Ni_{1-x}O$ thin films and$Ni_{1-x}O$ on three-dimensional carbon substrates for electrochemical capacitors batteries, fuel cells, and energy conversion, J. Electrochem. Soc., 152, A2123-A2129 (2005). https://doi.org/10.1149/1.2039647 - I. H. Kim, J. H. Kim, and K. B. Kim, Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application, Electrochem. Solid-State Lett., 8, A369-A372 (2005). https://doi.org/10.1149/1.1925067
- B.-H. Kim, C. H. Kim, K. S. Yang, A. Rahy, and D. J. Yang, Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes, Electrochim. Acta, 83, 335-340 (2012). https://doi.org/10.1016/j.electacta.2012.07.093
- B.-H. Kim, K. S. Yang, and D. J. Yang, Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors, Electrochim. Acta, 109, 859-865 (2013). https://doi.org/10.1016/j.electacta.2013.07.180
-
M. Sathiya, A. S. Prakash, K. Ramesha, J. M. Tarascon, and A. K. Shukla,
$V_2O_5$ -Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage, J. Am. Chem. Soc., 133, 16291-16299 (2011). https://doi.org/10.1021/ja207285b - H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, and T. Kudo, Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores, J. Phys. Chem. C, 111, 227-233 (2007).
- S. W. Woo, K. Dokko, H. Nakano, and K. Kanamura, Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors, J. Mater. Chem., 18, 1674-1680 (2008). https://doi.org/10.1039/b717996k
- D. W. Wang, F. Li, M. Liu, G. Q. Lu, and H. M. Cheng, 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage, Angew. Chem. Int. Edit., 47, 373-376 (2008). https://doi.org/10.1002/anie.200702721
- M. Selvakumar, D. K. Bhat, A. M. Aggarwal, S. P. Iyer, and G. Sravani, Nano ZnO activated carbon composite electrodes for supercapacitors, Phys. B, 405, 2286-2289 (2010). https://doi.org/10.1016/j.physb.2010.02.028
- L. S. Aravindaa, K. K. Nagarajab, H. S. Nagarajab, K. U. Bhat, and B. R. Bhat, ZnO/carbon nanotube nanocomposite for high energy density supercapacitors, Electrochim. Acta, 95, 119-124 (2013). https://doi.org/10.1016/j.electacta.2013.02.027
- Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun, C. Sun, and B. K. Tay, Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors, Solid State Ionics, 180, 1525-1528 (2009). https://doi.org/10.1016/j.ssi.2009.10.001
- D. Kalpana, K. S. Omkumar, S. S. Kumar, and N. G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor, Electrochim. Acta, 52, 1309-1315 (2006). https://doi.org/10.1016/j.electacta.2006.07.032
- C. H. Kim and B.-H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes, J. Power Sources, 274, 512-520 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.126
- C. H. Kim and B.-H. Kim, Electrochemical behavior of zinc oxide-based porous carbon composite nanofibers as an electrode for electrochemical capacitors, J. Electro. Chem., 730, 1-9 (2014). https://doi.org/10.1016/j.jelechem.2014.07.014
- J. Mu, C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang, B. Chen, and Y. Liu, High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures, ACS Appl. Mater. Interfaces, 3, 590-596 (2011). https://doi.org/10.1021/am101171a
- S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, and X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano, 4, 2822-2830 (2010). https://doi.org/10.1021/nn901311t
Cited by
- Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance vol.7, pp.2, 2016, https://doi.org/10.1002/aenm.201601301
- High conductivity electrospun carbon/graphene composite nanofiber yarns pp.00323888, 2017, https://doi.org/10.1002/pen.24643