DOI QR코드

DOI QR Code

Fabrication of WS2-W-WC Embedded Carbon Nanofiber Composites for Supercapacitors

슈퍼 커패시터를 위한 WS2-W-WC가 내장된 탄소나노섬유 복합체의 제조

  • Lee, Yu-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이유진 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2015.04.10
  • Accepted : 2015.04.21
  • Published : 2015.04.28

Abstract

$WS_2$-W-WC embedded carbon nanofiber composites were fabricated by using electrospinning method for use in high-performance supercapacitors. In order to obtain optimum electrochemical properties for supercapacitors, $WS_2$ nanoparticles were used as precursors and the amounts of $WS_2$ precursors were controlled to 4 wt% (sample A) and 8 wt% (sample B). The morphological, structural, and chemical properties of all samples were investigated by means of field emission photoelectron spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. These results demonstrated that the embedded phases of samples A and B were changed from $WS_2$ to $WS_2$-W-WC through carbothermal reaction during carbonization process. In particular, sample B presented high specific capacitance (~119.7 F/g at 5 mV/s), good high-rate capacitance (~60.5%), and superb cycleability. The enhanced electrochemical properties of sample B were explained by the synergistic effect of the using 1-D structure supports, increase of specific surface area, and improved conductivity from formation of W and WC phases.

Keywords

References

  1. D. H. Lee, K. M. Lee and J. R. Yoona: J. KIEEME, 23 (2010) 843 (Korean).
  2. G. Wang, L. Zhang and J. Zhang: Chem. Soc. Rev., 41 (2012) 797. https://doi.org/10.1039/C1CS15060J
  3. Y. J. Lee, D. G. Kim and H. J. Ahn: ECS Solid State Lett., 4 (2015) M1.
  4. S. M. Chen, R. Ramachandran, V. Mani and R. Saraswathi: Int. J. Electrochem. Sci., 9 (2014) 4072.
  5. R. Kotz and M. Carlen: Electrochim. Acta, 45 (2000) 2483. https://doi.org/10.1016/S0013-4686(00)00354-6
  6. F. Li, J. Song, H. Yang, S. Gan, Q. Zhang, D. Han, A. Ivaska and L. Niu: Nanotechnology, 20 (2009) 455602. https://doi.org/10.1088/0957-4484/20/45/455602
  7. Y. H. Kim and S. J. Park: Curr. Appl. Phys., 11 (2011) 462. https://doi.org/10.1016/j.cap.2010.08.018
  8. Y. J. Lee, G. H. An and H. J. Ahn: Kor. J. Mater. Res., 24 (2014) 37 (Korean). https://doi.org/10.3740/MRSK.2014.24.1.37
  9. B. Hu, X. Qin, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi and X. Sun: Electrochem. Commun., 28 (2013) 75. https://doi.org/10.1016/j.elecom.2012.11.035
  10. W. Liu, Y. Soneda, M. Kodama, J. Yamashita and H. Hatori: Carbon, 45 (2007) 2759. https://doi.org/10.1016/j.carbon.2007.09.032
  11. R. Koc and S. K. Kodambaka: J. Eur. Ceram. Soc., 20 (2000) 1859. https://doi.org/10.1016/S0955-2219(00)00038-8
  12. A. D. Paola, L. Palmisano, A. M. Venezia and V. Augugliaro: J. Phys. Chem. B, 103 (1999) 8236. https://doi.org/10.1021/jp9911797
  13. G. A. Swift and R. Koc: J. Mater. Sci., 36 (2001) 803. https://doi.org/10.1023/A:1004821921796
  14. J. C. Sanchez-Lopez, D. Martinez-Martinez, M. D. Abad and A. Fernandez: Surf. Coat. Technol., 204 (2009) 947. https://doi.org/10.1016/j.surfcoat.2009.05.038
  15. G. Lim, J. H. Lee, J. Kim, H. W. Lee and S. H. Hyun: Wear, 257 (2004) 863. https://doi.org/10.1016/j.wear.2004.02.007
  16. G. H. An and H. J. Ahn: ECS Solid State Lett., 2 (2013) M33.
  17. M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou and H. K. Liu: Angew. Chem., 119 (2007) 764. https://doi.org/10.1002/ange.200603309
  18. G. H. An and H. J. Ahn: J. Power Sources, 272 (2014) 828. https://doi.org/10.1016/j.jpowsour.2014.09.032
  19. J. Martin: Meas. Sci. Technol., 24 (2013) 085601. https://doi.org/10.1088/0957-0233/24/8/085601
  20. H. Chhina, S. Campbell and O. Kesler: J. Power Sources, 164 (2007) 431. https://doi.org/10.1016/j.jpowsour.2006.11.003