DOI QR코드

DOI QR Code

Synthesis of CNT on a Camphene Impregnated Titanium Porous Body by Thermal Chemical Vapor Deposition

티타늄 다공체에 담지된 Camphene과 화학기상증착법을 이용한 CNT 합성

  • Kim, Hogyu (Department of Materials Science and Engineering, Hanyang University) ;
  • Choi, Hye Rim (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jong Min (Department of Materials Science and Engineering, Hanyang University) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • 김호규 (한양대학교 신소재공학과) ;
  • 최혜림 (한양대학교 신소재공학과) ;
  • 변종민 (한양대학교 신소재공학과) ;
  • 석명진 (강원대학교 재료금속공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Received : 2015.04.13
  • Accepted : 2015.04.17
  • Published : 2015.04.28

Abstract

In this study, titanium(Ti) meshes and porous bodies are employed to synthesize carbon nanotubes(CNTs) using methane($CH_4$) gas and camphene solution, respectively, by chemical vapor deposition. Camphene is impregnated into Ti porous bodies prior to heating in a furnace. Various microscopic and spectroscopic techniques are utilized to analyze CNTs. It is found that CNTs are more densely and homogeneously populated on the camphene impregnated Ti-porous bodies as compared to CNTs synthesized with methane on Ti-porous bodies. It is elucidated that, when synthesized with methane, few CNTs are formed inside of Ti porous bodies due to methane supply limited by internal structures of Ti porous bodies. Ti-meshes and porous bodies are found to be multi-walled with high degree of structural disorders. These CNTs are expected to be utilized as catalyst supports in catalytic filters and purification systems.

Keywords

References

  1. S. Iijima: Nature, 354 (1991) 56. https://doi.org/10.1038/354056a0
  2. S. Limpattayanate and M. Hunsom: Renew. Energy, 63 (2014) 205. https://doi.org/10.1016/j.renene.2013.09.014
  3. I. Y. Jang, K. C. Park, Y. C. Jung, S. H. Lee, S. M. Song, H. Muramatsu, Y. J. Kim and M. Endo: J. Nanosci. Nanotechnol., 11 (2011) 675. https://doi.org/10.1166/jnn.2011.3229
  4. H. J. Joung, J. H. Kim, J. S. Oh, D. W. You, H. O. Park and K. W. Jung: Appl. Surf. Sci., 290 (2014) 267. https://doi.org/10.1016/j.apsusc.2013.11.066
  5. W. Sun, Z. Liu, C. Jiang, Y. Xue, W. Chu and X. Zhao: Catal. Today, 212 (2013) 206. https://doi.org/10.1016/j.cattod.2012.09.024
  6. M. Paradise and T. Goswami: Mater. Design, 28 (2007) 1477. https://doi.org/10.1016/j.matdes.2006.03.008
  7. M. Kumar and Y. Ando: J. Nanosci. Nanotechnol., 10 (2010) 3739. https://doi.org/10.1166/jnn.2010.2939
  8. S. Dorfler, I. Felhosi, I. Kek, T. Marek, H. Althues, S. Kaskel and L. Nyikos: J. Power Sour., 208 (2012) 426. https://doi.org/10.1016/j.jpowsour.2012.02.067
  9. S. Y. Kwak, H. G. Kim, J. M. Byun, J. H. Park, M-J. Suk, S-T. Oh and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2014) 28. https://doi.org/10.4150/KPMI.2014.21.1.28
  10. J. H. Park, J. M. Byun, H. S. Kim, M-J. Suk, S-T. Oh and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2014) 371. https://doi.org/10.4150/KPMI.2014.21.5.371
  11. M. Hashempour, A. Vicenzo, F. Zhao and M. Bestetti: Carbon, 63 (2013) 330. https://doi.org/10.1016/j.carbon.2013.06.087
  12. H. Sharma, A. K. Shukla and V. D. Vankar: J. Appl. Phys., 110 (2011) 033726. https://doi.org/10.1063/1.3622565
  13. M. S. Kabir, R. E. Morjan, O. A. Nerushev, P. Lundgren, S. Bengtsson, P. Enokson and E. E. B. Campbell: Nanotechnol., 16 (2005) 458. https://doi.org/10.1088/0957-4484/16/4/022
  14. H. G. Seo, Y. D. Kim, M-J. Suk and S-T. Oh: Kor. J. Mater. Res., 23 (2013) 339. https://doi.org/10.3740/MRSK.2013.23.6.339
  15. P. K. Link: Basic Petroleum Geology, OGCI Publications, Tulsa (1987).
  16. D. R. Poirior and G. H. Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale (1994).
  17. M. J. O'Neil: The Merck Index, Whitehouse Station, Merck (2006).
  18. R. L. Vander Wal and L. J. Hall: Carbon, 41 (2003) 659. https://doi.org/10.1016/S0008-6223(02)00369-X
  19. Y. H. Gwon, J. K. Ha, K. K. Cho and H. S. Kim: Nanoscale Res. Lett., 7 (2012) 61. https://doi.org/10.1186/1556-276X-7-61
  20. W-W. Liu, S-P. Chai, A. R. Mohamed and U. Hashim: J. Ind. Eng. Chem., 20 (2014) 1171. https://doi.org/10.1016/j.jiec.2013.08.028
  21. Y. I. Lee, M. H. Park, J. H. Bae, S. E. Lee, K. W. Song, T. H. Kim, Y. H. Lee and C.W. Yang: J. Nanosci. Nanotechnol., 11 (2011) 479. https://doi.org/10.1166/jnn.2011.3216
  22. F. Doustan, A. A. Hosseini and M. A. Pasha: J. Nanostructures, 3 (2013) 333.
  23. L. Gan, R. Lv, H. Du, B. Li and F. Kang: Carbon, 47 (2009) 183.