• Title/Summary/Keyword: nanocrystalline alloy

Search Result 120, Processing Time 0.025 seconds

Influences of Electrodeposition Variables on the Internal Stess of Nanocrystalline Ni-W Films (나노결정질 Ni-W 합금전착의 내부응력에 미치는 공정조건 변수의 영향)

  • Kim, Kyung-Tae;Lee, Jung-Ja;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.275-279
    • /
    • 2012
  • Ni-W alloy deposits have lately attracted the interest as an alternative surface treatment method for hard chromium electrodeposits because of higher wear resistance, hardness at high temperature, and corrosion resistance. This study deals with influences of process variables, such as electodeposition current density, plating temperature and pH, on the internal stress of Ni-W nanocrystalline deposits. The internal stress was increased with increasing the applied current density. With increasing applied current density, the grain size of the deposit decreases and concentration of hydrogen in the deposit increases. The subsequent release of the hydrogen results in shrinkage of the deposit and the introduction of tensile stress in the deposit. Consequently, for layers deposited at high current density, cracking occurs readily owing to high tensile stress value. By increasing the temperature of the electrodeposition from $60^{\circ}C$ to $80^{\circ}C$, the internal stress was decreased. It seems that an increase in the number of active ions overcoming the activation energy at elevated temperature caused a decline in the concentration polarization and surface diffusion. It decreased the level of hydrogen absorption due to the lessened hydrogen evolution reaction. Therefore, the lower level of hydrogen absorption degenerated the hydride on the surface of the electrode, resulting in the reduction of the internal stress of the deposits. By increasing the pH of the electrodeposition from 5.6 to 6.8, the internal stress in the deposits were slightly decreased. It is considered that the decrease in internal stess of deposits was due to supply of W complex compound in cathode surface, and hydrogen ion resulted from decrease of activity.

Effects of F-treatment on the Degradation of $Mg_2$Ni type Hydrogen Storage Alloy Electrode ($Mg_2$Ni계 수소저장합금전극의 퇴화거동에 미치는 불화 처리 영향)

  • Kim, Jun-Seong;Choe, Jae-Ung;Lee, Chang-Rae;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.294-299
    • /
    • 2001
  • Effects of the surface fluorination on the electrochemical charge-discharge properties of $Mg_2$Ni electrode in Ni-MH batteries fabricated by mechanical alloying were investigated. After 20h ball milling, Mg and Ni powder formed nanocrystalline $Mg_2$Ni. Discharge capacity of this alloy increased greatly at first one cycle, but due to the formation of Mg(OH)$_2$ passive layer, it showed a rapid degradation in alkaline solution within 10cyc1es. In case of 6N KOH +xN KF electrolyte (x = 0.5, 1, 2), a continuous and stable fluorinated layer formed by adding excess F$^{[-10]}$ ion, increased durability of $Mg_2$Ni electrode greatly and high rate discharge capability(90-100mAh/g). 2N KF addition led to the highest durability of all tested here. The reason of the improvement is due to thin MgF$_2$, which can prevent the $Mg_2$Ni electrode from forming Mg(OH)$_2$layer that is the main cause of degradation.

  • PDF

Ferromagnetic Resonance Study of a Nanocrystalline $Fe_{76}Cu_{1}Nb_{3}Si_{14}B_{6}$ Alloy (초미세결정합금 $Fe_{76}Cu_{1}Nb_{3}Si_{14}B_{6}$의 강자성공명 연구)

  • 이수형;김원태;장평우;김약연;임우영
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 1994
  • Ferromagnetic resonance experiment was performed to study the variations of micromagnetic structure with heat treatment of melt spun $Fe_{76}Cu_{1}Nb_{3}Si_{14}B_{6}$ alloy for 1h at every $50^{\circ}C$ in the temperature range of $400^{\circ}C-700^{\circ}C$. The variations of micromagnetic structure was discussed qualitatively in terms of the variations of line width ${\Delta}H_{p-p}$ and resonance magnetic field $H_{res}$. With increasing armealing temperature to $400^{\circ}C$, ${\Delta}H_{p-p}$ decreases and $H_{res}$ increases due to the decrease in magnetic anisotropy resulting from structural relaxation during heat treatment. With increasing annealing temperature from 400 to $500^{\circ}C$, ${\Delta}H_{p-p}$ increases and $H_{res}$ decreases due to the increase in magnetic anisotropy resulting from the formation of nanocrystalline particles embedded in an amorphous matrix. With increasing armealing temperature from 500 to $550^{\circ}C$, ${\Delta}H_{p-p}$ decreases and $H_{res}$ increases due to the decrease in magnetic anisotropy resulting from the formation of homogeneous nanocrystalline structure with a minor amorphous phase. Further increase in armealing temperature above $550^{\circ}C$ C causes ${\Delta}H_{p-p}$ to increase and $H_{res}$ to decrease due to the increase in magnetic anisotropy due to the formation of inhomogeneous grain structure and intermetallic compounds.

  • PDF

The Magnetic Properties of Nanocrystalline Fe73.5Cu1Nb3Si15.5B7 Alloy Powder Cores (Fe73.5Cu1Nb3Si15.5B7나노 결정립 합금 분말 코아의 자기적 특성)

  • Noh, T.H.;Choi, H.Y.;Ahn, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • The annealing-temperature dependence of magnetic properties in compressed powder cores being composed of ball-milled F $e_{73.5}$C $u_1$N $b_3$S $i_{15.5}$ $B_{7}$ alloy powders (size 250∼850${\mu}{\textrm}{m}$) and 5 wt% of ceramic insulators has been investigated. When annealed at 5$50^{\circ}C$ for 1 h and so transformed to $\alpha$-Fe phase nanocrystalline structure with the grain size of 11 nm (electrical resistivity : 110 $\mu$$.$cm), the highest effective permeability of 125 and quality factor of 53 were obtained, and the permeability persisted up to about 500 KHz. Further the core loss measured at the frequency of 50 KHz and the induction amplitude of 0.1 T was very low (230 mW/㎤). However the dc bias characteristics was not satisfactory as compared to that of conventional powder core materials(MPP, Sendust etc.). The inferior dc bias property of F $e_{73.5}$C $u_1$N $b_3$S $i_{15.5}$ $B_{7}$ alloy powder cores was attributed to the fact that the size of powder was too large for obtaining the same permeability with that of conventional materials.

Heat Treatment Effects of $Fe_{73.0}Cu{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$Alloy with Imbedded Nanocrystalline Phase under Magnetic Field (초미세결정립과 비정질이 공존하는 $Fe_{73.9}$$Cu_{1.0}$$Nb_{3.5}$$Si_{14.0}$$B_{7.6}$ 합금의 자기장 중 열처리)

  • Yang, J.S.;Son, D.;Cho, Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • The crystallographic and high frequency characteristics of $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ soft magnetic alloys were investigated under the magnetic field annealing. As-cast ribbon with which already imbedded nanocrystalline Fe-Si phase on the surface have a preferred orientation with (400) plane to surface and also with the [011] direction parallel to the ribbon length. The extra nanocrystalline Fe-Si phase appeared throughout at 45$0^{\circ}C$ in samples with or without the longitudinal magnetic field. However the formation of nanocrystalline phase does not appear on the suface layer until 50$0^{\circ}C$ annealing temperature under the transverse field. The cryststallization fraction of annealed samples with longitudinal magnetic field is higher than that of samples without magnetic field. When the transverse magnetic field is applied, the crystallization fraction does not increases but decreases until 50$0^{\circ}C$. However the crystallization of internal regions can be confirmed by X-ray diffraction measurement via tilting the sample. It was found that for all samples, the saturation induction were all same with 1.3 T. The coercive field of as-cast sample was 1.06 A/cm, but in annealed samples it decrease from 0.56 to 0.1 A/cm with increasing annealing temperature from 400 and 55$0^{\circ}C$, respectively. The squareness of annealed samples under transverse magnetic field has a small value than that of both without field and with longitudinal field annealing.

  • PDF

Development of High Strength Mg-Zn-Gd Alloys by Rapid Solidification Processing

  • Kim, Min-Chul;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1048-1049
    • /
    • 2006
  • Rapidly solidified ribbon-consolidation processing was applied for preparation of high strength bulk Mg-Zn-Gd alloys. Mg alloys have been used in automotive and aerospace industries. Rapid solidification (RS) process is suitable for the development of high strength Mg alloys, because the process realizes grain-refinement, increase in homogeneity, and so on. Recently, several nanocrystalline Mg-Zn-Y alloys with high specific tensile strength and large elongation have been developed by rapidly solidified powder metallurgy (RS P/M) process. Mg-Zn-Y RS P/M alloys are characterized by long period ordered (LPO) structure and sub-micron fine grains. The both additions of rare earth elements and zinc remarkably improved the mechanical properties of RS Mg alloys. Mg-Zn-Gd alloy also forms LPO structure in -Mg matrix coherently, therefore, it is expected that the RS Mg-Zn-Gd alloys have excellent mechanical properties. In this study, we have developed high strength RS Mg-Zn-Gd alloys with LPO structure and nanometer-scale precipitates by RS ribbon-consolidation processing. $Mg_{97}Zn_1Gd_2$ and $Mg_{95.5}Zn_{1.5}Gd_3$ and $Mg_{94}Zn_2Gd_4$ bulk alloys exhibited high tensile yield strength (470 MPa and 525 MPa and 566 MPa) and large elongation (5.5% and 2.8% and 2.4%).

  • PDF

Effect of Boron Additions on Glass Formation and Magnetic Properties of Fe-Co-Ti-Zr-B Amorphous Ribbons

  • Kim, Sumin;Han, Bo Kyeong;Choi-Yim, Haein
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.164-167
    • /
    • 2016
  • The effect of the B additions on glass formation and magnetic properties is reported for the $Fe_{(87-x-y)}Co_yTi_7Zr_6B_x$ (x = 2, 4, 6 and y = 35, 40) alloy system. The ribbon samples with the width of 2 mm for each composition were prepared by the melt spinning technique; furthermore, their phase information was obtained from X-ray diffraction. Glass formation and magnetic properties were measured using differential scanning calorimetry and vibrating sample magnetometer respectively. The $Fe_{45}Co_{40}Ti_7Zr_6B_2$ (x = 2 and y = 40) system has the nanocrystalline phase identified as ${\alpha}-Fe$, as well as the amorphous phase, whereas all other alloys are fully amorphous. It is associated with the role of B on the glass formation. The widest supercooled liquid region is obtained as 71 K at x = 4 (both y = 35 and 40). The saturation magnetization decreases with the increase of the amount of the B addition, and the highest value is 1.59 T as x = 2 and y = 35 for this alloy system.

Magnetically Soft Nanomaterials Obtained by Devitrification of Metallic Glasses

  • Kulik, Tadeusz;Ferenc, Jaroslaw;Kowalczyk, Maciej;Xiubing, Liang;Nedelko, Natalya
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.65-68
    • /
    • 2004
  • Magnetically soft nanomaterials obtained by controlled crystallisation of metallic glasses are the newest group of materials for inductive components. In particular, research is carried out in the field of alloys for high temperature applications. This kind of materials must meet two basic requirements: good magnetic properties and stability of properties and structure. In the present work the magnetic properties and structure of Fe-Co-Hf-Zr-Cu-B (HIDTPERM-type) alloys were investigated, as well as their stability. Differential thermal analysis, (DTA), X-ray diffractometry (XRD), transmission electron microscopy (TEM), magnetometry (VSM) and quasistatic hysteresis loop recording were used to characterise structure and properties of the alloys investigated. Optimisation against properties and their stability was performed, resulting in formulation of chemical composition of the optimum alloy, as well as its heat treatment.

Synthesis and Mechanical Properties of $Ti_{25}Cr_8Al_{67}$ Alloy by Mechanical Alloying (기계적 합금화에 의한 $Ti_{25}Cr_8Al_{67}$ 합금의 합성 및 기계적 성질)

  • 이강률
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.231-237
    • /
    • 1995
  • The powder mixtures of Al, Ti and Cr were mechanically alloyed to obtain nanocrystalline powders of $Ti_{25}Cr_8Al_{67}$ composition. Both FCC phase and undissolved metal chromium formed by MA. During the annealing of the MA powders, the phase transition from FCC to ordered $Ll_2$ started at ~$300^{\circ}C$ and was completed below $600^{\circ}C$. As a result of the high-temperature compressive test for the MA powder compacts, the stress-strain curves showed serrated yielding behavior at 400 and $600^{\circ}C$, and softening phenomenon below the strain rate of $5{\times}10^{-3}s^{-1}$ at $800^{\circ}C$. The compressive yield strength as a function of test temperatures showed the nature of the positive-temperature dependence which has the peak temperature around $600^{\circ}C$.

  • PDF

Synthesis and Microstructural Characterization of Mechanically Milled $(Ti_{52}Al_{48})_{100-x}$-xB (x=0,0.5,2,5) Alloys (기계적 분쇄화법으로 제조된 $(Ti_{52}Al_{48})_{100-x}$-xB(x=0,0.5,2,5) 합금분말의 제조 및 미세조직 특성)

  • 표성규
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.98-110
    • /
    • 1998
  • $Ti_{52}Al_{48}$ and $(Ti_{52}Al_{48})_{100-x}B_x(x=0.5, 2, 5)$ alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary $Ti_{52}Al_{48}$ powders consists of grains of hexagonal phase whose structure is very close to $Ti_2Al$. $(Ti_{52}Al_{48})_{95}B_5$ powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100$0^{\circ}C$ for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of $\gamma$-TiAl phase with dispersions of $Ti_2AlN$ and $A1_2O_3$ phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of $\gamma$-TiAl grains with fine dispersions of $TiB_2$ within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.

  • PDF