• Title/Summary/Keyword: nano-thick

Search Result 272, Processing Time 0.029 seconds

A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate (Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구)

  • Kim, In-Ho;Lee, Gil-Young;Ju, Jeong-Min;Park, Kyoung-Tae;Chun, Byong-Sun
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

Properties of Dinickel-Silicides Counter Electrodes with Rapid Thermal Annealing

  • Kim, Kwangbae;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.94-99
    • /
    • 2017
  • Dinickel-silicide $(Ni_2Si)/glass$ was employed as a counter electrode for a dye-sensitized solar cell (DSSC) device. $Ni_2Si$ was formed by rapid thermal annealing (RTA) at $700^{\circ}C$ for 15 seconds of a 50 nm-Ni/50 nm-Si/glass structure. For comparison, $Ni_2Si$ on quartz was also prepared through conventional electric furnace annealing (CEA) at $800^{\circ}C$ for 30 minutes. XRD, XPS, and EDS line scanning of TEM were used to confirm the formation of $Ni_2Si$. TEM and CV were employed to confirm the microstructure and catalytic activity. Photovoltaic properties were examined using a solar simulator and potentiostat. XRD, XPS, and EDS line scanning results showed that both CEA and RTA successfully led to tne formation of nano $thick-Ni_2Si$ phase. The catalytic activity of $CEA-Ni_2Si$ and $RTA-Ni_2Si$ with respect to Pt were 68 % and 56 %. Energy conversion efficiencies (ECEs) of DSSCs with $CEA-Ni_2Si$ and $RTA-Ni_2Si$catalysts were 3.66 % and 3.16 %, respectively. Our results imply that nano-thick $Ni_2Si$ may be used to replace Pt as a reduction catalytic layer for a DSSCs. Moreover, we show that nano-thick $Ni_2Si$ can be made available on a low-cost glass substrate via the RTA process.

Thermal Stability of Ru-inserted Nickel Monosilicides (루테늄 삽입층에 의한 니켈모노실리사이드의 안정화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.159-168
    • /
    • 2008
  • Thermally-evaporated 10 nm-Ni/1 nm-Ru/(30 nm or 70 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Ru-inserted nickel monosilicide. The silicide samples underwent rapid thermal anne aling at $300{\sim}1,100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process were formed on the top of the single crystal and polycrystalline silicon substrates mimicking actives and gates. The sheet resistance was measured using a four-point probe. High resolution X-ray diffraction and Auger depth profiling were used for phase and chemical composition analysis, respectively. Transmission electron microscope and scanning probe microscope(SPM) were used to determine the cross-sectional structure and surface roughness. The silicide, which formed on single crystal silicon and 30 nm polysilicon substrate, could defer the transformation of $Ni_2Si $i and $NiSi_2 $, and was stable at temperatures up to $1,100^{\circ}C$ and $1,100^{\circ}C$, respectively. Regarding microstructure, the nano-size NiSi preferred phase was observed on single crystalline Si substrate, and agglomerate phase was shown on 30 nm-thick polycrystalline Si substrate, respectively. The silicide, formed on 70 nm polysilicon substrate, showed high resistance at temperatures >$700^{\circ}C$ caused by mixed microstructure. Through SPM analysis, we confirmed that the surface roughness increased abruptly on single crystal Si substrate while not changed on polycrystalline substrate. The Ru-inserted nickel monosilicide could maintain a low resistance in wide temperature range and is considered suitable for the nano-thick silicide process.

Molding of High Aspect Ratio Nano-Hair Array and Its Applications (고세장비 나노 헤어 성형 및 응용)

  • Yoo, Y.E.;Kim, T.H.;Seo, Y.H.;Choi, D.S.;Lee, H.J.;Kim, W.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.113-116
    • /
    • 2006
  • Some nano hair systems in the nature are found to show excellent adhesive characteristic, which is called dry adhesive, and synthetic nano hairs to mimic these adhesiveness are believed to have many applications. To develop a practical synthetic dry adhesive system, we mold nano hairs on plastic substrates using thermoplstic materials including COC, PP, PC and PMMA. and estimate the moldability and the adhesive characteristic. As a template for molding nano hairs, AAO membrane is first adopted, which is 60um thick and 13mm in diameter. This membrane has about a billion of through-holes of which diameter is around 200nm. This AAO membrane and the pellet of materials are stacked in the mold and pressed to mold after heating up to be melted. The AAO membrane is removed using KOH to obtain the molded nano hairs. As a result, the diameter of the molded hairs is around 200nm and the length is $2um{\sim}60um$ depending on the molding conditions and materials. The molded nano hair substrates is estimated to show much better adhesive characteristic than a substrate without nano hairs.

  • PDF

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

UV Absorption of Nano-thick $TiO_2$ Prepared Using an ALD (ALD 방법으로 제조된 나노급 $TiO_2$에 의한 자외선 차단효과 연구)

  • Han, Jeung-Jo;Song, Oh-Sung;Ryu, Ji-Ho;Yoon, Ki-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.726-732
    • /
    • 2007
  • We fabricated UV absorption functional $10{\sim}50nm-TiO_{2-x}/quartz$ structures layer using ALD (atomic layer deposition) method. We deposited $10nm-TiO_{2-x}$ layer on quartz substrate using ALD, and film thickness was determined by an ellipsometer. The others specimen thickness was controlled by ALD time lineally. We characterized controlling phase UV and visible optical property using an X-ray difractometer, a UV-VIS-IR spectrometer and a digital camera. $ALD-TiO_{2-x}$ layers were non-stoichiometric $TiO_{2-x}$ form and amorphous phases comparing with bulk $TiO_2$. While the conventional bulk $TiO_2$ had band gap of $3.0{\sim}3.2eV$ resulting in absorption edges at 380 nm and 415 nm, $ALD-TiO_{2-x}$ layers showed absorption edges at 197 nm and 250 nm. Therefore, our nano-thick $ALD-TiO_{2-x}$ was able to absorb shorter UV region and showed excellent transmittance in visible region. Our result implies that our newly proposed nano-thick $TiO_{2-x}$ using ALD process may improve transmittance in visible rays and be able to absorb shorter UV light effectively.

  • PDF

Investigation into direct fabrication of nano-patterns using nano-stereolithography (NSL) process (나노 스테레오리소그래피 공정을 이용한 무(無)마스크 나노 패턴제작에 관한 연구)

  • Park Sang Hu;Lim Tae-Woo;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.156-162
    • /
    • 2006
  • Direct fabrication of nano patterns has been studied employing a nano-stereolithography (NSL) process. The needs of nano patterning techniques have been intensively increased for diverse applications for nano/micro-devices; micro-fluidic channels, micro-molds. and other novel micro-objects. For fabrication of high-aspect-ratio (HAR) patterns, a thick spin coating of SU-8 process is generally used in the conventional photolithography, however, additional processes such as pre- and post-baking processes and expansive precise photomasks are inevitably required. In this work, direct fabrication of HAR patterns with a high spatial resolution is tried employing two-photon polymerization in the NSL process. The precision and aspect ratio of patterns can be controlled using process parameters of laser power, exposure time, and numerical aperture of objective lens. It is also feasible to control the aspect ratio of patterns by truncation amounts of patterns, and a layer-by-layer piling up technique is attempted to achieve HAR patterns. Through the fabrication of several patterns using the NSL process, the possibility of effective patterning technique fer various N/MEMS applications has been demonstrated.

A New Species of the Genus Ophlitaspongia (Poecilosclerida: Microcionidae) from Korea

  • Kang, Dong-Won;Sim, Chung-Ja
    • Animal Systematics, Evolution and Diversity
    • /
    • v.23 no.2
    • /
    • pp.209-211
    • /
    • 2007
  • A new marine sponge in the family Microcionidae, Ophlitaspongia yongjeongensis n. sp. is collected from Yongjeong-ri, Hyeongyeong-myeon, Muan-gun, Korea during 2005-2007. O. yongjeongensis n. sp. is closely related to O. reticulata in growth form (shape and color). However, the thick style and slender style of O. yongjeongensis n. sp. are larger than O. reticulata's (Bergquist and Fromont, 1988).

Characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting acetonitrile (아세토나이트릴 가스 검지를 위한 센스의 제작 및 특성)

  • Park, Young-Ho;Lee, Chang-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • This study investigated sensitivity of the gas sensor to chemical weapons with the sensor material doped with catalysts. The nano-sized SnO2 powder mixed with metal oxides (TiO2) was doped with transition metals(Pt, Pd and In). Thick film of nano-sized SnO2 powder with TiO2 was prepared by screen-printing method onto Al2O3 substrates with platinum electrode and chemical precipitation method. The physical and chemical properties of sensor material were investigated by SEM/EDS, XRD and BET analyzers. The measured sensitivity to simulant toxic gas is defined as the percentage of resistance of value equation, [(Ra-Rg)/$Ra\;{\times}100$)], that of the resistance(Ra) of SnO2 film in air and the resistance(Rg) of SnO2 film in acetonitrile gas. The best sensitivity and selectivity of these thick film were shown with 1wt.% Pd and 1wt.% TiO2 for acetonitile gas at the operating temperature of $250^{\circ}C$.

  • PDF

Investigation of Conductive Pattern Line for Direct Digital Printing (디지털 프린팅을 위한 전도성 배선에 관한 연구)

  • Kim, Yong-Sik;Seo, Shang-Hoon;Lee, Ro-Woon;Kim, Tae-Hoon;Park, Jae-Chan;Kim, Tae-Gu;Jeong, Kyoung-Jin;Yun, Kwan-Soo;Park, Sung-Jun;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.502-502
    • /
    • 2007
  • Current thin film process using memory device fabrication process use expensive processes such as manufacturing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as PCB, FCPB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line for the electronic circuit board using metal ink contains Ag nano-particles. Metal lines are fabricated by two types of printing methods. One is a conventional printing method which is able to quick fabrication of fine pattern line, but has various difficulties about thick and high resolution DPI(Dot per Inch) pattern lines because of bulge and piling up phenomenon. Another(Second) methods is sequential printing method which has a various merits of fabrication for fine, thick and high resolution pattern lines without bulge. In this work, conductivities of metal pattern line are investigated with respect to printing methods and pattern thickness. As a result, conductivity of thick pattern is about several un.

  • PDF