Thermal Stability of Ru-inserted Nickel Monosilicides

루테늄 삽입층에 의한 니켈모노실리사이드의 안정화

  • Yoon, Kijeong (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 윤기정 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2007.10.16
  • Published : 2008.03.22

Abstract

Thermally-evaporated 10 nm-Ni/1 nm-Ru/(30 nm or 70 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Ru-inserted nickel monosilicide. The silicide samples underwent rapid thermal anne aling at $300{\sim}1,100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process were formed on the top of the single crystal and polycrystalline silicon substrates mimicking actives and gates. The sheet resistance was measured using a four-point probe. High resolution X-ray diffraction and Auger depth profiling were used for phase and chemical composition analysis, respectively. Transmission electron microscope and scanning probe microscope(SPM) were used to determine the cross-sectional structure and surface roughness. The silicide, which formed on single crystal silicon and 30 nm polysilicon substrate, could defer the transformation of $Ni_2Si $i and $NiSi_2 $, and was stable at temperatures up to $1,100^{\circ}C$ and $1,100^{\circ}C$, respectively. Regarding microstructure, the nano-size NiSi preferred phase was observed on single crystalline Si substrate, and agglomerate phase was shown on 30 nm-thick polycrystalline Si substrate, respectively. The silicide, formed on 70 nm polysilicon substrate, showed high resistance at temperatures >$700^{\circ}C$ caused by mixed microstructure. Through SPM analysis, we confirmed that the surface roughness increased abruptly on single crystal Si substrate while not changed on polycrystalline substrate. The Ru-inserted nickel monosilicide could maintain a low resistance in wide temperature range and is considered suitable for the nano-thick silicide process.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, Eddie Er, and S. Redkar, Appl. Phys. Lett. 78, 20 (2001)
  2. J. Prokop, C. E. Zybill, and S. Veprek, Thin Solid Films 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  3. C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K. Maex, and H. Bender, S. Zhu, J. Appl. Phys. 88, 1 (2000) https://doi.org/10.1063/1.373615
  4. O. O. Awadelkarim, S. J. Fonash, P. I. Mikulan, M. Ozaita, and Y. D. Chan, Microelectronics Eng. 28, 47 (1995) https://doi.org/10.1016/0167-9317(95)00013-X
  5. E. G. Colgan, J. P. Gambino, and Q. Z. Hong, Mater. Sci. Engin. 16, 43 (1996) https://doi.org/10.1016/0927-796X(95)00186-7
  6. H. Fang, M. C. Ozturk, E. G. Seebauer, and D. E. Batchelor, J. Electrochem. Soc. 146, 4240 (1999) https://doi.org/10.1149/1.1392621
  7. J. Lutze, G. Scott and M. Manley, IEEE Electron Device Lett. 21, 155 (2000) https://doi.org/10.1109/55.830966
  8. F. Hong, and G. A. Rozgonyi, J. Electrochem. Soc. 141, 12 (1994)
  9. F. Hong, G. A. Rozgonyi, and B. Patnaik, Appl. Phys. Lett. 61, 13 (1992) https://doi.org/10.1063/1.107645
  10. J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, IEEE Trans. Electron Devices 38, 262 (1991) https://doi.org/10.1109/16.69904
  11. C. Lavoie, F. M. d`Heurle, C. Detavernier, and C. Cabral Jr., Microelectronic Engineering 70, 2 (2003)
  12. B. A. Julies, D. Knoesen, R. Pretorius, and D. Adams, Thin Solids Films 347, 201 (1999) https://doi.org/10.1016/S0040-6090(99)00004-8
  13. K. J. Yoon, and O. S. song, Kor. J. Mater. Res. 16, 9 (2006) https://doi.org/10.3740/MRSK.2006.16.9.571
  14. W. Huang, L. Zhang, Y. Gao, and H. Jin, Microelectronic Eng. 83, 345, (2006) https://doi.org/10.1016/j.mee.2005.10.001
  15. D. B. Williams, and C. B. Carter, Transmission Electron Microscopy Basics I, 1st ed., p.152-170, Plenum Press, NewYork, U.S.A. (1996)
  16. O. S. Song, K. J. Yoon, T. H. Lee, and M. J. Kim, Kor. J. Mater. Res. 17, 4 (2007) https://doi.org/10.3740/MRSK.2007.17.4.207
  17. J. A. Kittl, A. Lauwers, M. A. Pawlak, M. J.H. Dal, A. Veloso, K. J. Anil, G. Pourtois, C. Demeurisse, T. Schram, B. Brijs, M. Potter, C. Vrancken, and K. Maex, Microelectronic Engineering 82, 441 (2005) https://doi.org/10.1016/j.mee.2005.07.084