• 제목/요약/키워드: nano-morphology

검색결과 674건 처리시간 0.029초

BAM을 이용한 L막의 상전이 현상과 유기초박막의 미세구조에 관한 연구 (A Study on the Microstructure of Organic Ultra Thin Films and Phase Transition of Langmuir Films in BAM)

  • 김병근;전동규;김영근;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.938-941
    • /
    • 2003
  • It is well known that the state of existence of molecules on the surface of water changes during compression of the molecules. Electric methods, such as measurement of the surface potential or displacement current are also useful for investigating dynamic changes of molecular state on the water surface during compression and Transformation of molecular film occurs only usually in air-water interface, 2 dimensions domain's growth and crash are achieved. Organic thin film that consist of growth of domain can understand correct special quality of accumulation film supplying information about fine structure and properties of matter of device observing information and so on that is surface forward player and optic enemy using AFM one of SPM application by nano electronics. In this paper Langmuir (L) that is one of basis technology to manufacture of organic matter device using biology material PBDG that is kind of polypeptide that have biology adaptedness. The Experiment method used ${\pi}-A$ isotherm and BAM(Brewster Angle Microscopy), using the BAM, we can to the molecular orientation of monolayer on the water surface and directly see the morphology of the films on water subphase as well as that of the films.

  • PDF

양극산화 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구 (ON THE SURFACE CHARACTERISTICS AND STABILITY OF IMPLANT TREATED WITH ANODIZING OXIDATION)

  • 김원상;조인호
    • 대한치과보철학회지
    • /
    • 제44권5호
    • /
    • pp.549-560
    • /
    • 2006
  • Purpose : This experiment examined the effects of anodization on commercially pure titanium implant fixtures. Material & methods : The implant fixtures were anodized at three different voltage levels, producing three different levels of oxidation on the surface of the fixure. Implant were divided into four groups according to the level of oxidation. Group 1 consist of the control group of machined surface implants, Group 2 implants were treated by anodizing to 100 voltage, Group 3 implants were treated by anodizing oxidation to 200 voltage Group 4 implants were treated by anodizing oxidation to 350 voltage. Surface morphology was observed by Scanning Electron Microscope(SEM) and the surface roughness was measured using NanoScan $E-1000^{\circledR}$. Implantation of the fixtures were performed using New Zealand white rabbits. $Periotest^{\circledR}$ value(PTV) resonance frequency analysis(RFA), and removal torque were measured in 0, 2, 4, 8, 12 weeks after implantation. Results : The results of the study were as follows: 1. Values for the measured surface roughness indicate statistically significant differences in Ra, Rq, and Rt values among group 1, 2, 3, and 4 at the top portion of the thread,(p<0.05) while values at the base of the threads indicated no significant difference in these values. 2. A direct correlation between the firming voltage, and surface roughness and irregularities were observed using scanning electron microscope. 3. No statistically significant differences were found between test groups regarding $Periotest^{\circledR}$ values. 4. Analysis of the data produced by RFA, significant differences were found between group 1 and group 4 at 12 weeks after implantation.(p<0.05) Conclusions : In conclusion, no significant differences could be found among test groups up to a certain level of forming voltage threshold, beyond this firming voltage threshold, statistically significant differences occurred as the surface area of the oxide layer increased with the increase in surface porosity, resulting in enhanced bone response and osseointegration.

Investigation of Properties of Synthetic Microparticles for a Retention and Drainage System

  • Lee, Sa-Yong;Hubbe Martin A.;Park, Sun-Kyu
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.61-66
    • /
    • 2006
  • Over the past 20 years there has been a revolution involving the use of nano or macro size particles as drainage and retention systems during the manufacture of paper. More recently a group of patented technologies called Synthetic Mineral Microparticles (SMM) has been invented and developed. This system has potential to further promote the drainage of water and retention of fine particles during papermaking. Prior research, as well as our on preliminary research showed that the SMM system has advantages in both of drainage and retention compared with montmorillonite (bentonite), which one of the most popular materials presently used in this kind of application. In spite of the demonstrated advantages of this SMM system, the properties and activity of SMM particles in the aqueous state have not been elucidated yet. Streaming current titrations with highly charged polyelectrolytes were used to measure the charge properties of SMM and to understand the interactions among SMM particles, fibers, fiber fines, and cationic polyacrylamide (cPAM) as a retention aid. It was found that pH profoundly affects the charge properties of SMM, due to the influence of Al-ions and the Si-containing particle surface. SEM pictures, characterizing the morphology, geometry and size distribution of SMM, showed an broad distribution of primary particle size. Dilution of SMM mixturee appeared to wash out particles smaller than 100 nm from the surface of larger particles, which themselves appeared to be composed of fused primary particles. DSC thermoporometry was used to measure the size distribution of nanopores within SMM particles.

  • PDF

침전법과 착체중합법을 이용한 Ga2O3 분말의 합성 및 결정구조 분석 (Synthesis and Crystal Structure Characterization of Ga2O3 Powder by Precipitation and Polymerized Complex Methods)

  • 정종열;김상훈;강은태;한규성;김진호;황광택;조우석
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.156-161
    • /
    • 2014
  • Gallium oxide ($Ga_2O_3$) powders were synthesized using a precipitation method and a polymerized complex method. TG-DSC, SEM, and XRD were performed to investigate the phase and morphology of the $Ga_2O_3$. In situ high-temperature XRD analysis revealed the crystal structure of $Ga_2O_3$ at different temperatures. The $Ga_2O_3$ obtained using the precipitation method and polymerized complex method were generally spherical-shaped particles and their average particle size was approximately 80 nm and $1{\mu}m$, respectively. The crystal structure of the $Ga_2O_3$ prepared by the precipitation method was changed from rhombohedral to monoclinic at $700^{\circ}C$, while monoclinic $Ga_2O_3$ was obtained directly from the precursor by the polymerized complex method.

형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰 (Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating)

  • 권동준;왕작가;최진영;신평수;이은선;박종만
    • Composites Research
    • /
    • 제27권3호
    • /
    • pp.109-114
    • /
    • 2014
  • 나노입자에 대한 복합재료 수요가 증가되면서 효과적인 나노입자 보강재를 이용한 나노복합재료 제조공정 단순화를 추구하고 있다. 본 연구에서는 나노입자를 활용하여 전도성과 계면 강도를 향상시킨 나노입자 강화유리섬유 소재에 대한 연구를 진행하였다. 탄소계 나노입자의 형상에 따른 유리섬유 표면에 흡착된 나노입자 상태를 FE-SEM으로 분석하였다. 나노입자 코팅층의 내구성을 평가하기 위한 방법으로 초음파 세척과정에 따른 나노입자의 세척 정도를 분석하여 탄소계 나노입자의 형상에 따른 나노입자 코팅층의 내구성을 분석하였다. 동적피로 실험을 통하여 나노입자 강화 유리섬유/에폭시의 계면강도를 나노입자 형상에 따른 차이에 따라 비교하였다. 나노입자 코팅층의 내구성은 단섬유 강화 복합재료시편을 이용하여 분석하였다. 겉보기 강성도 결과와 나노입자코팅층의 전도성 변화를 분석하여 코팅층의 다기능성을 분석할 수 있었다. 판상형의 나노입자 보다는 섬유 형태의 나노입자가 유리섬유 표면에 흡착성이 용이하였다. 계면 내구성 및 안정성에 효과가 있음을 확인하였다.

다중벽 탄소 나노튜브가 분산된 Poly(methyl methacrylate) 고분자 용액의 전기방사연구 (Characteristics of Electrospun Poly(methyl methacrylate) Nanofibers Embedding Multi-Walled Carbon Nanotubes(MWNTs))

  • 김동욱;이대회;윤성식;이선애;남재도
    • 폴리머
    • /
    • 제30권1호
    • /
    • pp.90-94
    • /
    • 2006
  • 다중벽 탄소 나노튜브(multi-walled carbon nanotubes, MWNTs)를 포함하고 있는 poly(methyl methacrylate)(PMMA) 나노섬유를 전기 방사법에 의해 제작하였다. 주사 전자 현미경을 통하여 용매의 종류(dimethyl formamide, chloroform and toluene)와 탄소 나노튜브의 함량(0.5 and $3.0\;wt\%$)에 의해 나노섬유 표면의 형상과 탄소 나노튜브와 나노섬유의 구조가 영향을 받았다. 집적판의 전극 모양을 조절함으로써 나노섬유의 정렬이 가능하였다. 고분자 사슬의 회전 반경과 탄소 나노튜브의 크기의 비교를 통하여 PMMA 나노섬유와 탄소 나노튜브의 관계를 정리하였다. 탄소 나노튜브 투입량이 증가함에 따라 고분자 비드가 증가하였다.

수열합성 공정을 이용한 금속 다공체의 나노 산화물 형성 (Formation of Nano-oxides on Porous Metallic Glass Compacts using Hydrothermal Synthesis)

  • 박혜진;김영석;홍성환;김정태;조재영;이원희;김기범
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.229-233
    • /
    • 2015
  • Porous metallic glass compact (PMGC) are developed by electro-discharge sintering (EDS) process of gas atomized $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ metallic glass powder under of 0.2 kJ generated by a $450{\mu}F$ capacitor being charged to 0.94 kV. Functional iron-oxides are formed and growth on the surface of PMGCs via hydrothermal synthesis. It is carried out at $150^{\circ}C$ for 48hr with distilled water of 100 mL containing Fe ions of 0.18 g/L. Consequently, two types of iron oxides with different morphology which are disc-shaped $Fe_2O_3$ and needle-shaped $Fe_3O_4$ are successfully formed on the surface of the PMGCs. This finding suggests that PMGC witih hydrothermal technique can be attractive for the practical technology as a new area of structural and functional materials. And they provide a promising road map for using the metallic glasses as a potential functional application.

자기 조립 전구체를 이용한 초음파 분무 열분해 공정으로 제조한 BaFe12O19의 자기적 특성에 대한 연구 (A study on Magnetic Properties of BaFe12O19 Fabricated by Ultrasonic Spray-pyrolysis Process Using Self-Assembly Method)

  • 최문희;유지훈;김동환;정국채;김양도
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.263-269
    • /
    • 2010
  • Hexagonal barium ferrite ($BaFe_{12}O_{19}$) nano-particles have been successfully fabricated by spraypylorysis process. $BaFe_{12}O_{19}$ precursor solutions were synthesized by self-assembly method. Diethyleneamine (DEA) surfactant was used to fabricate the micelle structure of Ba-DEA complex under various DEA concentrations. $BaFe_{12}O_{19}$ powders were synthesized with addition of Fe ions to Ba-DEA complex and then fabricated $BaFe_{12}O_{19}$ powders by spray-pyrolysis process at the temperature range of $800{\sim}1000^{\circ}C$. The molar ratio of Ba/DEA and heat-treatment temperatures significantly affected the magnetic properties and morphology of $BaFe_{12}O_{19}$ powders. $BaFe_{12}O_{19}$ powders synthesized with Ba/DEA molar ratio of 1 and heat-treated at $900^{\circ}C$ showed the coercive forces (iHc) of 4.2 kOe with average crystal size of about 100 nm.

전기방사를 이용한 리그닌 나노섬유의 제조 (Fabrication of Lignin Nanofibers Using Electrospinning)

  • 이은실;이승신
    • 한국의류학회지
    • /
    • 제38권3호
    • /
    • pp.372-385
    • /
    • 2014
  • Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.

초음파 원용 레이저 가공에서 재료의 열적 물성이 표면상태에 미치는 영향에 관한 연구 (Study on the Effect of Thermal Property of Metals in Ultrasonic-Assisted Laser Machining)

  • 이후승;김건우;박종은;양민양;조성학;박종권
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.759-763
    • /
    • 2015
  • 레이저 가공 공정은 마스크 없이 전극을 가공할 수 있다는 장점 때문에 우수한 공정들 중의 하나로 제안되고 있다. 본 논문에서는, 서로 다른 열적 물성을 가지는 금속들에 레이저 가공을 수행하였다. 이 금속들은 서로 다른 표면형상, 열영향부, 그리고 재융착층을 나타내었고 이는 열전도도, 끓는점, 그리고 열확산계수에 의존하였다. 또한 재융착층을 제거하기 위하여 초음파 원용 레이저 가공을 적용, 높은 열확산계수를 가지는 재료에서 그 초음파 가진에 의한 표면 품질의 향상을 발견하였다.