DOI QR코드

DOI QR Code

Fabrication of Lignin Nanofibers Using Electrospinning

전기방사를 이용한 리그닌 나노섬유의 제조

  • Lee, Eunsil (Dept. of Clothing & Textiles, Yonsei University) ;
  • Lee, Seungsin (Dept. of Clothing & Textiles, Yonsei University)
  • 이은실 (연세대학교 의류환경학과) ;
  • 이승신 (연세대학교 의류환경학과)
  • Received : 2013.12.31
  • Accepted : 2014.04.28
  • Published : 2014.06.30

Abstract

Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.

Keywords

References

  1. Ago, M., Okajima, K., Jakes, J. E., Park, S., & Rojas, O. J. (2012). Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules, 13(3), 918-926. https://doi.org/10.1021/bm201828g
  2. Ahn, B. I., Kim, C. H., Lee, J. Y., Sim, S. W., Jo, H. S., Lee, G. S., & Lee, J. Y. (2012). Analysis on the trend of the utilization of woody biomass - production, supply, and practical use of woody biomass. Journal of Korea Technical Association of the Pulp and Paper Industry, 44(4), 32-42. https://doi.org/10.7584/ktappi.2012.44.4.032
  3. Ahn, Y., Lee, S. H., Kim, H. J., Yang, Y. H., Hong, J. H., Kim, Y. H., & Kim, H. (2012). Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydrate Polymers, 88 (1), 395-398. https://doi.org/10.1016/j.carbpol.2011.12.016
  4. Cho, D., Nnadi, O., Netravali, A., & Joo, Y. L. (2010). Electrospun hybrid soy protein/PVA fibers. Macromolecular Materials and Engineering, 295(8), 763-773. https://doi.org/10.1002/mame.201000161
  5. Cho, D., Netravali, A. N., & Joo, Y. L. (2012). Mechanical properties and biodegradability of electrospun soy protein isolate/PVA hybrid nanofibers. Polymer Degradation and Stability, 97(5), 747-754. https://doi.org/10.1016/j.polymdegradstab.2012.02.007
  6. Dallmeyer, I., Ko, F., & Kadla, J. F. (2010). Electrospinning of technical lignins for the production of fibrous networks. Journal of Wood Chemistry and Technology, 30(4), 315-329. https://doi.org/10.1080/02773813.2010.527782
  7. Dong, X., Dong, M., Lu, Y., Turley, A., Jin, T., & Wu, C. (2011). Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Industrial Crops and Products, 34(3), 1629-1634. https://doi.org/10.1016/j.indcrop.2011.06.002
  8. Eom, I. Y., Kim, K. H., & Choi, J. W. (2009). 친환경 천연고분자 소재로서 리그닌의 생성, 구조 및 활용 [Formation, structure, and application of lignin as an eco-friendly biopolymer]. Fiber Technology and Industry, 13(1), 28-38.
  9. Gericke, M., Schlufter, K., Liebert, T., Heinze, T., & Budtova, T. (2009). Rheological properties of cellulose/ionic liquid solutions: From dilute to concentrate states. Biomacromolecules, 10(5), 1188-1194. https://doi.org/10.1021/bm801430x
  10. Hardelin, L., Thunberg, J., Perzon, E., Westman, G., Walkenstrom, P., & Gatenholm, P. (2012). Electrospinning of cellulose nanofibers from ionic liquids: the effect of different cosolvents. Journal of Applied Polymer Science, 125(3), 1901-1909. https://doi.org/10.1002/app.36323
  11. Holladay, J. E., Bozell, J. J., White, J. F., & Johnson, D. (2007). Top value-added chemicals from biomass. volume II - results of screening or potential candidates from biorefinery lignin, technical report, October 2007. Richland, WA: Pacific Northwest National Laboratory.
  12. Hu, T. Q. (2002). Chemical modification, properties, and usage of lignin. New York: Kluwer Academic/Plenum.
  13. Hur, Y., & Lee, S. (2011). Fabrication of ZnO and $TiO_2$ nanocomposite fibers and their photocatalytic decomposition of harmful gases. Journal of the Korean Society of Clothing and Textiles, 35(11), 1297-1308. https://doi.org/10.5850/JKSCT.2011.35.11.1297
  14. Jang, S. Y., & Kim, Y. G. (2013). 전기분사방법을 이용한 나노 카본재료 박막제조 및 태양전지 전극재료로의 응용 [Fabrication of nano carbon material synthesized membrane and application to solar cell electrode]. Ceramist, 16(1), 59-66.
  15. Kadla, J. F., Kubo, S., Venditti, R. A., Gilbert, R. D., Compere, A. L., & Griffith, W. (2002). Lignin-based carbon fibers for composite fiber applications. Carbon 40(15), 2913-2920. https://doi.org/10.1016/S0008-6223(02)00248-8
  16. Kim, J. J., Baek, K. H., & Choi, J. W. (2011). 바이오에너지 바이오매스 [Bioenergy and biomass]. Seoul: Bookshill.
  17. Kim, Y. S. (2011). A research trend on utilization of the byproduct (lignin) from bioethanol production process with lignocellulosic biomass. Journal of Forest Science, 27(3), 183-194.
  18. Kubo, S., & Kadla, J. F. (2004). Poly(ethylene oxide)/organosolv lignin blends: Relationship between thermal properties, chemical structure, and blend behavior. Macromolecules, 37(18), 6904-6911. https://doi.org/10.1021/ma0490552
  19. Kubo, S., & Kadla, J. F. (2005). Hydrogen bonding in lignin: A fourier transform infrared model compound study. Biomacromolecules, 6(5), 2815-2821. https://doi.org/10.1021/bm050288q
  20. Lallave, M., Bedia, J., Ruiz-Rosas, R., Rodriguez-Miraso, J., Cordero, T., Otero, J. C., Marquez, M., Barrero, A., & Loscertales, I. G. (2007). Filled and hollow carbon nanofiber by coaxial electrospinning of alcell lignin without binder polymers. Advanced Materials, 19(23), 4292-4296. https://doi.org/10.1002/adma.200700963
  21. Lee, J. I., Kim, I. S., & So, H. J. (2009). 목질계 바이오매스의 에너지 활용방안 [A study on the energy utilization of woody biomass]. Seoul: Gyeonggi Research Institute.
  22. Lee, K., & Lee, S. (2010). Fabrication and evaluation of electrospun $TiO_{2}$ nanocomposite fibers for the development of UV-protective textile materials. Journal of the Korean Society of Clothing and Textiles, 34(11), 1767-1778. https://doi.org/10.5850/JKSCT.2010.34.11.1767
  23. Leung, V., & Ko, F. (2010). Biomedical applications of nanofibers. Polymers for Advanced Technologies, 22(3), 350-365.
  24. Marsano, E., Francis, L., & Giunco, F. (2010). Polyamide 6 nanofibrous nonwovens via electrospinning. Journal of Applied Polymer Science, 117(3), 1754-1765.
  25. Nada, A. M. A., El-Diwanya, A. I., & Elshafei, A. M. (1989). Infrared and antimicrobial studies on different lignins. Acta Biotechnologica, 9(3), 295-298. https://doi.org/10.1002/abio.370090322
  26. Park, T. J., Jung, Y. J., Choi, S. W., Park, H., Kim, H., Kim, E., Lee, S. H., & Kim, J. H. (2011a). Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromolecular Research, 19(3), 213-215. https://doi.org/10.1007/s13233-011-0315-0
  27. Park, T. J., Jung, Y. J., Choi, S. W., Park, H., Kim, H., Kim, E., Lee, S. H., & Kim, J. H. (2011b). Photoluminescent synthetic wood fibers from an ionic liquid via electrospinning. Macromolecular Research, 19(4), 317-320. https://doi.org/10.1007/s13233-011-0416-9
  28. Perez, J., Munoz-Dorado, J., de la Rubia, T., & Martinez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53-63. https://doi.org/10.1007/s10123-002-0062-3
  29. Poole, A. J., Church, J. S., & Huson M. G. (2009). Environmentally sustainable fibers from regenerated protein. Biomacromolecules, 10(1), 1-8. https://doi.org/10.1021/bm8010648
  30. Ruiz-Rosas, R., Bedia, J., Lallave, M., Loscertales, I. G., Barrero, A., Rodriguez-Mirasol, J., & Cordero, T. (2009). The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon, 48(3), 696-705.
  31. Ruiz-Rosas, R., Bedia, J., Lallave, M., Loscertales, I. G., Barrero, A., Rodriguez-Mirasol, J., & Cordero, T. (2010). Preparation and characterization of co-electrospun lignin/alumina microfibers and tubes. Proceedings of the Carbon Conference 2010, USA, 10, 453-454.
  32. Schreiber, M., Vivekanandhan, S., Mohanty, A. K., & Misra, M. (2012). A study on the electrospinning behavior and nanofibre morphology of anionically charged lignin. Advanced Material Letters, 3(6), 476-480.
  33. Visakh, P. M., Mathew, A. P., & Thomas, S. (2013). Natural polymers: Their blends, composites and nanocomposites: State of art, new challenges and opportunities. In S. Thomas, P. M. Visakh, & A. P. Mathew (Eds.), Advances in natural polymers (pp. 1-20). Dordrecht: Springer.
  34. Zhang, Y. H. (2008). Reviving the carbohydrate economy via multi-product lignocelluloses biorefineries. Journal of Industrial Microbiology and Biotechnology, 35(5), 367-375. https://doi.org/10.1007/s10295-007-0293-6
  35. Zimniewska, M., Kozlowski, R., & Batog. J. (2008). Nanolignin modified linen fabric as a multifunctional product. Molecular Crystals and Liquid Crystals, 484(1), 409-416.

Cited by

  1. Crosslinking of lignin/poly(vinyl alcohol) nanocomposite fiber webs and their antimicrobial and ultraviolet-protective properties pp.1746-7748, 2017, https://doi.org/10.1177/0040517517736468