• Title/Summary/Keyword: nano-friction

Search Result 266, Processing Time 0.028 seconds

Performance Evaluation of Thrust Slide-Bearing of Scroll Compressors under R-22 Environment (R-22 냉매 분위기하에서 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.590-595
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil are evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

Study on Improvement of Lubrication Characteristics for the Material of Compressor Friction Parts with Nano-oil (나노 오일을 이용한 압축기 습동부 재질의 윤활 특성 향상에 관한 연구)

  • Kim, Sung-Choon;Kim, Kyong-Min;Hwang, Yu-Jin;Park, Young-Do;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.559-563
    • /
    • 2009
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester for measuring friction surface temperature and the coefficient of friction. The average friction coefficient of nano-oil was reduced by 60% compared to raw oil under 600 N and 1,000 rpm. It is believed that the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were also investigated by the optical and atomic force microscopy. Conclusively, it is expected that wear and friction coefficient of compressor can be reduced by alignment applying nano-oil as refrigerant oil.

Nano/Micro Friction with the Contact Area (접촉 면적에 따른 나노/마이크로 마찰 특성)

  • Yoon Eui-Sung;Singh R. Arvind;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • Nano/micro friction with the contact area was studied on Si-wafer (100) and diamond-like carbon (DLC) film. Borosilicate balls of radii $0.32{\mu}m,\;0.5{\mu}m,\;1.25{\mu}m\;and\;2.5{\mu}m$ mounted on the top of AFM tip (NPS) were used for nano-scale contact and Soda Lime glass balls of radii 0.25mm, 0.5mm, 1mm were used for micro-scale contact. At nano-scale, the friction between ball and surface was measured with the applied normal load using an atomic force microscope (AFM), and at micro scale it was measured using ball-on flat type micro-tribotester. All the experiments were conducted at controlled conditions of temperature $(24\pm1^{\circ}C)$ and humidity $(45\pm5\%)$. Friction was measured as a function of applied normal load in the range of 0-160nN at nano scale and in the range of $1000{\mu}N,\; 1500{\mu}N,\;3000{\mu}N\;and\;4800{\mu}N$ at micro scale. Results showed that the friction at nano scale increased with the applied normal load and ball size for both kinds of samples. Similar behavior of friction with the applied normal load and ball size was observed for Si-wafer at micro scale. However, for DLC friction decreased with the ball size. This difference of in behavior of friction in DLC nano- and microscale was attribute to the difference in the operating mechanisms. The evidence of the operating mechanisms at micro-scale were observed using scanning electron microscope (SEM). At micro-scale, solid-solid adhesion was dominant in Silicon-wafer, while plowing in DLC. Contrary to the nano scale that shows almost a wear-less situation, wear was prominent at micro-scale. At nano- and micro-scale, effect of contact area on the friction was discussed with the different applied normal load and ball size.

Nanotribological characteristics of silicon surfaces modified by IBAD (IBAD로 표면개질된 실리콘표면의 나노 트라이볼로지적 특성)

  • 윤의성;박지현;양승호;공호성;장경영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.127-134
    • /
    • 2001
  • Nano adhesion and friction between a Sj$_3$N$_4$ AFM tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various ranges of normal load. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and Si-wafer of different surface roughness were used. Results showed that nano adhesion and friction decreased as the surface roughness increased. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the normal load was low.

  • PDF

Micro/Nano Adhesion and Friction Properties of Mixed Self-assembled Monolayer (혼합 자기 조립 단분자막의 마이크로/나노 응착 및 마찰 특성)

  • Yoon Eui-Sung;Oh Hyun-Jin;Han Hung-Gu;Kong Hosung;Jhang Kyung Young
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2004
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and under micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that water contact angles of mixed SAMs were similar to those of pure SAMs. The morphology of coating surface was roughened as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain length, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

Micro/nano adhesion and friction properties of mixed self-assembled monolayer (혼합 Self-assembled monolayer의 마이크로/나노 응착 및 마찰 특성)

  • Oh Hyun-Jin;Yoon Eui-Sung;Han Hung-Gu;Kong Hosung;Jhang Kyung Young
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.56-63
    • /
    • 2003
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water wetting angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that wetting angles of mixed SAMs showed the similar value of pure SAMs. The coating surface morphology was increased as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

  • PDF

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressor (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Han-Jong;Cho, Yong-Il;Cho, Sang-Won;Lee, Jae-Keun;Park, Min-Chan;Kim, Dae-Jin;Lee, Kwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.121-125
    • /
    • 2012
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the thrust bearing experimental apparatus for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and rotating speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing rotating speed and normal force. The friction coefficient of carbon nano-oil is 0.023, while that of pure oil is 0.03 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressors (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Ahn, Young-Chull;Lee, Jung-Eun;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Kim, Dong-Han;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1219-1224
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with n mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear Lising nano-oil is evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oilenhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

Analysis of Nano-Tribophysics (Nano-Tribophysics 해석 기술)

  • 최덕현;황운봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.215-218
    • /
    • 2003
  • Nano-scale experiments for adhesion force and friction force were performed with AFM/FFM. In macro-scale, the friction coefficient is constant without relating to the change of contact area. However, many papers have indicated that in nano-scale, the friction coefficient is related to the contact area. Contact area would increase with the normal force. Therefore, in this study, we analyzed the trend of the friction coefficient of Si(100) and Mica according to the normal force and then. the contact area was calculated by JKR-theory. Results showed the friction coefficient was constant under 180 nm$^2$ contact area and over 180 nm$^2$ contact area, it was degraded. Moreover. the friction coefficient was constant according to the adhesion force.

  • PDF

Performance Evaluation of Nano-Lubricants at Journal Bearing of Scroll Compressors (나노 윤활유를 이용한 스크롤 압축기 저널 베어링의 윤활특성 평가)

  • Kim, Kyong-Min;Hwang, Yu-Jin;Lee, Kwang-Ho;Sung, Chi-Un;Lee, Jae-Keun;Jung, Won-Hyun;Kim, Sung-Choon;Jin, Hong-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.189-193
    • /
    • 2008
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles in the journal bearing of scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester and the journal bearing tester for measuring friction surface temperature and the coefficient of friction at the journal bearing tester. In journal bearing test, the average friction coefficient of high concentration nano-oil was decreased down to 18% compared to raw oil under 4,500 N and 3,600 rpm. It is believed that nano particles can be coated on the wear surfaces and the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were measured with straightness. carbon nano oil enhances the characteristics of the anti-wear and friction at the joural bearing of scroll compressors.

  • PDF