• Title/Summary/Keyword: nano-Silica

Search Result 411, Processing Time 0.026 seconds

Preparation of Core/Shell Nanoparticles Using Poly(3,4-ethylenedioxythiophene) and Multi-Walled Carbon Nanotube Nanocomposites via an Atom Transfer Radical Polymerization (Poly(3,4-ethylenedioxythiophene)을 이용한 Core/shell 나노입자와 원자이동 라디칼중합 공정에 의한 다중벽 탄소나노튜브 나노복합체 제조)

  • Joo, Young-Tae;Jin, Seon-Mi;Kim, Yang-Soo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.452-457
    • /
    • 2009
  • Hybrid nanomaterials consisting of multi-walled carbon nanotube(MWNT) and/or PEDOT of conductive polymer were prepared in this study. In the presence of catalyst and ligand, the MWNT-Br compound prepared by the successive surface treatment reaction was mixed with MMA to initiate the atom transfer radical polymerization process. PMMA was covalently linked to the surface of MWNT for the formation of MWNT/PMMA nanocomposites. The EDOT and oxidant were added in the aqueous emulsion of PS produced via a miniemulsion polymerization process and then it proceeded to carry out the oxidative chemical polymerization of EDOT for the preparation of PEDOT/PS nanoparticles with the core-shell structure. The aqueous dispersion of PEDOT:poly(styrene sulfonate) (PSS) was mixed with the silica particles treated with a silane compound and thus PEDOT:PSS-clad silica nanoparticles were prepared by the surface chemistry reaction. The hybrid nanomaterials were analyzed by using TEM, FE-SEM, TGA, EDX, UV, and FT-IR.

Effect of Water Volume and Relaxation Time in the Design of Nano Shock Absorbing Damper Using Silica Particle (실리카 분말을 이용한 나노 충격완화 장치의 설계에서 작동 유체 영향과 복원 시간에 대한 연구)

  • 문병영;김병수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.286-292
    • /
    • 2003
  • In this study, new shock absorbing system was proposed using silica gel particles according to the nano-technology. For the design and real application of the proposed damper, an experimental investigations are carried out using colloidal damper, which is statically loaded. The porous matrix is composed from silica gel(labyrinth architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis were described. Iufluence of the water volume and particle diameters upon the reversible colloidal damper hysteresis was investigated. Also, influence of the relaxation time on the hysteresis of the damper was investigated. As a result, the proposed new shock absorbing damper is proved as an effective one, which can be replaced for the conventional hydraulic damper.

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

Effect of Alanine on Cu/TaN Selectivity in Cu-CMP (Cu-CMP에서 Alanine이 Cu와 TaN의 선택비에 미치는 영향)

  • Park Jin-Hyung;Kim Min-Seok;Paik Ungyu;Park Jea-Gun
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.426-430
    • /
    • 2005
  • Chemical mechanical polishing (CMP) is an essential process in the production of integrated circuits containing copper interconnects. The effect of alanine in reactive slurries representative of those that might be used in copper CMP was studied with the aim of improving selectivity between copper(Cu) film and tantalum-nitride(TaN) film. We investigated the pH effect of nano-colloidal silica slurry containing alanine through the chemical mechanical polishing test for the 8(inch) blanket wafers as deposited Cu and TaN film, respectively. The copper and tantalum-nitride removal rate decreased with the increase of pH and reaches the neutral at pH 7, then, with the further increase of pH to alkaline, the removal rate rise to increase soddenly. It was found that alkaline slurry has a higher removal rate than acidic and neutral slurries for copper film, but the removal rate of tantalum-nitride does not change much. These tests indicated that alanine may improve the CMP process by controlling the selectivity between Cu and TaN film.

Characteristics of 2-Step CMP (Chemical Mechanical Polishing) Process using Reused Slurry (재활용 슬러리를 사용한 2단계 CMP 특성)

  • Lee, Kyoung-Jin;Seo, Yong-Jin;Choi, Woon-Shik;Kim, Ki-Wook;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • Recently, CMP (chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of reused silica slurry in order to reduce the costs of CMP slurry. The post-CMP thickness and within-wafer non-uniformity(WIWNU) were measured as a function of different slurry composition. As a experimental result, the performance of reused slurry with annealed silica abrasive of 2 wt% contents was showed high removal rate and low non-uniformity. Therefore, we propose two-step CMP process as follows In the first-step CMP, we can polish the thick and rough film surface using remaked slurry, and then, in the second-step CMP, we can polish the thin film and fine pattern using original slurry. In summary, we can expect the saving of high costs of slurry.

  • PDF

Measurement of Thermal Shrinkage/Expansion Force of Filled Rubber (충전된 고무재료의 열변화에 따른 수축력/팽창력 측정)

  • Park, Sang-Min;Hong, Chang-Kook;Cho, Dong-Lyun;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.201-208
    • /
    • 2007
  • In this study, the thermal shrinkage and expansion stresses of filled NR and SBR vulcanizates were measured to investigate the dimensional stability at an elevated temperature. When a rubber sample was held at constant pre-strain, a thermal stress developed upon heating due to the entropic consideration. The peak shrinkage stress of carbon black or silica filled NR decreased with increasing filler content. In SBR compounds, however, the peak shrinkage stress of SBR with 30 phr filler content was higher than that of unfilled compounds. The expansion stress of carbon black filled NR was changed little, but that of filled SBR increased with increasing the filler content. The peak expansion stress of silica filled NR and SBR vulcanizates increased with increasing silica content.

STUDIES FOR THE CHARACTER OF THE POROUS SILICA CONTAINING THE NANO-SIZED TIO$_2$, PARTICLE IN THE PORE.

  • Jhun, Hyun-pyo;Kong, Woo-sik;Lee, Kyoung-chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.59-64
    • /
    • 1998
  • In order to lower porosity of the porous silica, titanium alkoxide solution was filled in the pore of silica in the heating-vacuum condition. The specific surface area of modified samples was decreased effectively from 900 m$^2$/g to 100 m$^2$/g. (The aggregation phenomena in modified samples were improved fairly.) Samples were heated at 600 , and then the titanium alkoxide in the pore was decomposed completely to titanium oxide from TGA-DTA measurement. From SEM result, it was evident that titanium oxide did not coat the surface of the silica. The modified samples were analyzed using SEM, DTA-TGA, BET, and UV-visible spectrometer.

  • PDF

Nano Crystalline Change by Heat Treatment

  • Sun, Yong-Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.55-59
    • /
    • 2013
  • Mold die sticking arises from silica filler abrasion to the cavity surface. Ni-P electroplating was examined to substitute conventional hard Cr plating. More than 4% of Phosphorus in the electroplated film produces nano crystal structure and annealing makes $Ni_3P$ precipitated to get hardness values equivalent to hard Cr.

Effect of Particle Size of Ceria Coated Silica and Polishing Pressure on Chemical Mechanical Polishing of Oxide Film

  • Kim, Hwan-Chul;Lim, Hyung-Mi;Kim, Dae-Sung;Lee, Seung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 2006
  • Submicron colloidal silica coated with ceria were prepared by mixing of silica and nano ceria particles and modified by hydrothermal reaction. The polishing efficiency of the ceria coated silica slurry was tested over oxide film on silicon wafer. By changing the polishing pressure in the range of $140{\sim}420g/cm^2$ with the ceria coated silica slurries in $100{\sim}300nm$, rates, WIWNU and friction force were measured. The removal rate was in the order of 200, 100, and 300 nm size silica coated with ceria. It was known that the smaller particle size gives the higher removal rate with higher contact area in Cu slurry. In the case of oxide film, the indentation volume as well as contact area gives effect on the removal rate depending on the size of abrasives. The indentation volume increase with the size of abrasive particles, which results to higher removal rate. The highest removal rate in 200 nm silica core coated with ceria is discussed as proper combination of indentation and contact area effect.

HMDS Treatment of Ordered Mesoporous Silica Film for Low Dielectric Application (저유전물질로의 응용을 휘한 규칙성 메조포러스 실리카 박막에의 HMDS 처리)

  • Ha, Tae-Jung;Choi, Sun-Gyu;Yu, Byoung-Gon;Park, Hyung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.48-53
    • /
    • 2008
  • In order to reduce signal delay in ULSI, an intermetal material of low dielectric constant is required. Ordered mesoporous silica film is proper to intermetal dielectric due to its low dielectric constant and superior mechanical properties. The ordered mesoporous silica film prepared by TEOS (tetraethoxysilane) / MTES (methyltriethoxysilane) mixed silica precursor and Brij-76 surfactant was surface-modified by HMDS (hexamethyldisilazane) treatment to reduce its dielectric constant. HMDS can substitute $-Si(CH_3)_3$ groups for -OH groups on the surface of silica wall. In order to modify interior silica wall, HMDS was treated by two different processes except the conventional spin coating. One process is that film is dipped and stirred in HMDS/n-hexane solution, and the other process is that film is exposed to evaporated HMDS. Through the investigation with different HMDS treatment, it was concluded that surface modification in evaporated HMDS was more effective to modify interior silica wall of nano-sized pores.