• Title/Summary/Keyword: nano sheet

Search Result 247, Processing Time 0.03 seconds

Effect of Conductive Additives in La0.8Sr0.2MnO3 Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution (알칼리용액에서 La0.8Sr0.2MnO3 페롭스카이트 촉매의 산소환원 및 발생반응에서 도전재의 영향)

  • SHIM, JOONGPYO;LOPEZ, KAREEN J.;YANG, JIN-HYUN;SUN, HO-JUNG;PARK, GYUNGSE;EOM, SEUNGWOOK;LEE, HONG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 2016
  • The effects of conductive additives in a $La_{0.8}Sr_{0.2}MnO_3$ perovskite bifunctional electrode for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated in an alkaline solution. Highly porous carbon black (CB) and Ni powder were added to the bifunctional electrodes as conductive additives. The surface morphologies of electrodes containing CB and Ni were observed by scanning electron microscopy (SEM). The current densities for both ORR and OER were changed by the addition of CB. The conductive additive changed physical properties of bifunctional electrodes such as the sheet conductance, gas permeability and contact angle. It was observed that the air permeability of electrode was most effective to enhance the currents for ORR and OER.

Thermal Stability of Ru-inserted Nickel Monosilicides (루테늄 삽입층에 의한 니켈모노실리사이드의 안정화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.159-168
    • /
    • 2008
  • Thermally-evaporated 10 nm-Ni/1 nm-Ru/(30 nm or 70 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Ru-inserted nickel monosilicide. The silicide samples underwent rapid thermal anne aling at $300{\sim}1,100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process were formed on the top of the single crystal and polycrystalline silicon substrates mimicking actives and gates. The sheet resistance was measured using a four-point probe. High resolution X-ray diffraction and Auger depth profiling were used for phase and chemical composition analysis, respectively. Transmission electron microscope and scanning probe microscope(SPM) were used to determine the cross-sectional structure and surface roughness. The silicide, which formed on single crystal silicon and 30 nm polysilicon substrate, could defer the transformation of $Ni_2Si $i and $NiSi_2 $, and was stable at temperatures up to $1,100^{\circ}C$ and $1,100^{\circ}C$, respectively. Regarding microstructure, the nano-size NiSi preferred phase was observed on single crystalline Si substrate, and agglomerate phase was shown on 30 nm-thick polycrystalline Si substrate, respectively. The silicide, formed on 70 nm polysilicon substrate, showed high resistance at temperatures >$700^{\circ}C$ caused by mixed microstructure. Through SPM analysis, we confirmed that the surface roughness increased abruptly on single crystal Si substrate while not changed on polycrystalline substrate. The Ru-inserted nickel monosilicide could maintain a low resistance in wide temperature range and is considered suitable for the nano-thick silicide process.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Electrophoretic Display by using Microcup Sheet and Charged Particles

  • Park, Lee-Soon;Park, Jin-Woo;Choi, Hae-Yun;Han, Yoon-Soo;Kwon, Young-Hwan;Choi, Hyung-Suk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.966-970
    • /
    • 2004
  • Electrophoretic display has recently stimulated tremendous interest due to potential commercialization in the filed of information displays including e-books, e-newspapers, and other low-power portable displays. A new transparent soft mold press (TSMP) process developed in this study was found to give a good electrophoretic display panel with prepatterned micropools for the filling of charged particle slurry. It was also found that charged $TiO_2$ particles with 74.09 mV of zeta potential and 3.11 ${\times}$ $10^{-5}$ $cm^2$/Vs of mobility were successfully prepared.

  • PDF

Thermal Conductivity Characteristic of Carbon Nanotube Composites and XLPE Insulator (탄소나노튜브 복합체와 XLPE 절연체의 열전도도 특성)

  • Yang, Jong-Seok;Kook, Jeong-Ho;Park, Noh-Joon;Nah, Chang-Woon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.160-161
    • /
    • 2006
  • To Improve the mean-life and the reliability of power cable, we have investigated thermal conductivity of XLPE insulator and semiconducting materials in l54[kV] underground power transmission cable. Specimens were made of sheet form with the nine of specimens for measurement. Thermal conductivity were measured by Nano Flash Diffusivity thermal conductivity measurement temperature ranges of XLPE insulator were from 20[$^{\circ}C$] to 90[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/mm]. In case of semiconducting materials. the measurement temperature ranges of thermal conductivity were from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min].

  • PDF

Inkjet Printable Transparent Conducting Oxide Electrodes

  • Kim, Han-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • We have demonstrated ink-jet printed indium tin oxide (ITO) and indium tin zinc oxide (IZTO) electrodes for cost-efficient organic solar cells (OSCs). By ink-jetting of crystalline ITO nano-particles and performing a rapid thermal anneal at $450^{\circ}C$, we were able to obtain directly patterned-ITO electrodes with an average transmittance of 84.14% and a sheet resistance of 202.7 Ohm/square without using a conventional photolithography process. The OSCs fabricated on the directly patterned ITO electrodes by ink-jet printing showed an open circuit voltage of 0.57 V, short circuit current of 8.47 mA/cm2, fill factor of 44%, and power conversion efficiency of 2.13%. This indicates that the ITO directly-patterned by ink-jet printing is a viable alternative to sputter-grown ITO electrodes for cost-efficient printing of OSCs due to the absence of a photolithography process for patterning and more efficient ITO material usage.

  • PDF

The Characterization of Electromagnetic Shielding of $SiO_2$/ITO Nano Films with Transition Metal Ions (전이금속이 첨가된 $SiO_2$/ITO 나노박막의 전자파 차폐특성)

  • 신용욱;김상우;손용배;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.15-21
    • /
    • 2001
  • 전자파 차폐 및 반사방지용으로 사용되는 SiO$_2$/ITO 이층박막의 전기적 특성에 미치는 전이금속이온의 영향에 대해 고찰하고 전자파 차폐이론식으로부터 박막의 전도특성에 모사하여 효과적인 전자파 차폐효과를 얻기 위한 전도막을 설계하고자 하였다. ITO 상층부에 전이금속염을 첨가한 실리카 복합졸을 코팅하여 SiO$_2$/ITO 이층막을 제조한 결과 최저 표면저항치를 나타내는 첨가량은 전이금속의 종류에 따라 차이를 보이지만 Sn 및 Zn이 첨가된 졸로부터 형성된 박막은 $10^{5}$Ω/$\square$ 이하의 낮은 저항치를 보였으며 가장 안정된 표면저하을 나타내었다. 또한 전자파 차폐효과와 전도박막의 표면저항을 차폐이론식으로부터 모사한 결과 Zn과 Sn의 전이금속염이 첨가된 SiO$_2$/ITO 투명전도막은 TCO99에서 정한 전자파 차폐기준에 부합하였다.다.

  • PDF

Principle Measurement for Sheet Resistance of Large Size Conductive Thin Films (대면적 전도성 박막의 면저항 정밀측정)

  • Kang, Jeon Hong;Yu, Kwang Min;Lee, Sang Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1515-1516
    • /
    • 2015
  • Touch panel 및 Touch screen 등의 투명전극으로 많이 사용되고 있는 ITO(Indium Tin Oxide)나 CNT(Carbon Nano Tube) 등 전도성 박막의 면저항을 쉽고 빠르게 측정하기 위하여 van der Pauw method를 이용한 면저항 측정기를 개발하였다. 이 면저항 측정기는 대면적 시료의 면저항을 측정 할 수 있어 매우 편리하다. 면저항 측정은 주로 Four Point Probe method로 측정하는 것이 일반적이나 본 연구에서는 van der Pauw method를 이용한 측정값과 Four Point Probe method로 측정한 결과를 비교한 결과 1 % 이내에서 일치하였다. 개발된 측정기의 측정 정확도는 지시값의 1.0 % 이하이고, 측정범위는 $2{\Omega}/{\square}{\sim} 5k{\Omega}/{\square}$이다.

  • PDF

디스플레이 고색 재현 형광 소재 기술

  • Choe, Seong-U;Kim, Seong-Min;O, Jeong-Rok;Yun, Cheol-Su
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.55-63
    • /
    • 2018
  • Recently, display technology has been focused in regard with with color reproduction, contrast ratio, image resolution and color bit. Among these technologies, the color reproducibliity of White, Red, Green, and Blue is associated with the TV plaform and is expressed as a major technology. Major TV platforms are divided into three categories since 2015, including LCD-based phosphor coverted LED BLU technology, QD sheet technology using nano-sized quantum dots, and OLED technology. In this paper, we describe the color reproducibility definition and background, luminescent materials with wide color gamut, color reproducibility of TV display performance, and discuss about next luminescent materials.

Doctor Blade Tape Casting of In-based Low Melting Point Alloy (In 계 저융점합금의 닥터 블레이드 테이프캐스팅)

  • Youn, Ki-Byoung
    • Journal of Korea Foundry Society
    • /
    • v.35 no.3
    • /
    • pp.62-66
    • /
    • 2015
  • Tape casting is an important forming operation used to prepare flat sheets in the various industries. In this study, Doctor Blade tape casting of In-based low melting point alloy was carried out. The purpose of this investigation was to determine the possibility of applying the Doctor Blade tape casting process to the manufacture of low melting point alloy sheets that can be used as thermal fusible parts of battery safety systems. In-based molten alloy that has a melting point of $95^{\circ}C$ was produced; it's viscosity was measured at various temperatures. The molten alloy was used as a slip in the caster of the Doctor Blade tape casting system. The effects of the molten alloy temperatures and carrier speeds on the produced sheet shape were observed. For the casting conditions of 1.5 cm slip height, $120^{\circ}C$ slip temperature, 0.05 mm blade gap and 60 m/min. carrier speed, an In-based alloy thin tape well shaped with 0.16 mm uniform thickness was continuously produced.