DOI QR코드

DOI QR Code

Effect of Conductive Additives in La0.8Sr0.2MnO3 Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution

알칼리용액에서 La0.8Sr0.2MnO3 페롭스카이트 촉매의 산소환원 및 발생반응에서 도전재의 영향

  • SHIM, JOONGPYO (Dpartment of Nano & Chemical Engineering, Kunsan National University) ;
  • LOPEZ, KAREEN J. (Dpartment of Nano & Chemical Engineering, Kunsan National University) ;
  • YANG, JIN-HYUN (Dpartment of Nano & Chemical Engineering, Kunsan National University) ;
  • SUN, HO-JUNG (Dpartment of Material Science & Engineering, Kunsan National University) ;
  • PARK, GYUNGSE (Dpartment of Chemistry, Kunsan National University) ;
  • EOM, SEUNGWOOK (Battery Research Center Korea Electrotechnology Research Institute) ;
  • LEE, HONG-KI (Fuel Cell Regional Innovation Center, Woosuk University)
  • Received : 2016.05.23
  • Accepted : 2016.06.30
  • Published : 2016.06.30

Abstract

The effects of conductive additives in a $La_{0.8}Sr_{0.2}MnO_3$ perovskite bifunctional electrode for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated in an alkaline solution. Highly porous carbon black (CB) and Ni powder were added to the bifunctional electrodes as conductive additives. The surface morphologies of electrodes containing CB and Ni were observed by scanning electron microscopy (SEM). The current densities for both ORR and OER were changed by the addition of CB. The conductive additive changed physical properties of bifunctional electrodes such as the sheet conductance, gas permeability and contact angle. It was observed that the air permeability of electrode was most effective to enhance the currents for ORR and OER.

Keywords

References

  1. K.A. Striebel, F.R. McLarnon, E.J. Cairns EJ : "Laboratory-scale evaluation of secondary alkaline zinc batteries for electric vehicles", J. Power Sources, Vol. 47, 1994, p. 1. https://doi.org/10.1016/0378-7753(94)80045-6
  2. J.W. Evans, G. Savaskan : "A zinc-air cell employing a packed bed anode", J. Appl. Electrochem., Vol. 21, 1991, p. 105. https://doi.org/10.1007/BF01464289
  3. Z. Chen, J.Y. Choi, H. Wang, H. Li, Z. Chen : "Highly durable and active non-precious air cathode catalyst for zinc air battery", J. Power Sources, Vol. 196, 2011, p. 3673. https://doi.org/10.1016/j.jpowsour.2010.12.047
  4. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn : "Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries", Nature Chem., Vol. 3, 2011, p. 546. https://doi.org/10.1038/nchem.1069
  5. V. Neburchilov, H. Wang, J.J. Martin, W. Qu : "A review on air cathodes for zinc-air fuel cells", J. Power Sources, Vol. 195, 2010, p. 1271. https://doi.org/10.1016/j.jpowsour.2009.08.100
  6. K. Nishio, S. Molla, T. Okugaki, S. Nakanishi, I. Nitta, Y. Kotani : "Oxygen reduction and evolution reactions of air electrodes using a perovskite oxide as an electrocatalyst", J. Power Sources, Vol. 278, 2015, p. 645. https://doi.org/10.1016/j.jpowsour.2014.12.100
  7. T. Poux, F.S. Napolskiy, T. Dintzer, G. Kerangueven, S.Y. Istomin, G.A. Tsirlina, E.V. Antipov, E.R. Savinova : "Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction", Catalysis Today, Vol. 189, 2012, p. 83. https://doi.org/10.1016/j.cattod.2012.04.046
  8. K. Kinoshita : "Carbon-Electrochemical and physicochemical properties", John Wiley & Sons, p334, 1988.
  9. N. Staud, P.N. Ross : "The Corrosion of Carbon Black Anodes in Alkaline Electrolyte: II. Acetylene Black and the Effect of Oxygen Evolution Catalysts on Corrosion", J. Electrochem. Soc., Vol. 133, 1986, p. 1079. https://doi.org/10.1149/1.2108790
  10. J. Shim, H.K. Lee : "Improved performance of Raney nickel electrode by the addition of electrically conductive materials for hydrogen oxidation reaction", Mater. Chem. Phys., Vol. 69, 2001, p. 72. https://doi.org/10.1016/S0254-0584(00)00349-7
  11. S.L. Medway, C.A. Lucas, A. Kowal, R.J. Nichols, D. Johnson : "In situ studies of the oxidation of nickel electrodes in alkaline solution", J. Electroanal. Chem., Vol. 587, 2006, p. 172. https://doi.org/10.1016/j.jelechem.2005.11.013
  12. K. Lopez, G. Park, H.J. Sun, J.C. An, S. Eom, J. Shim : "Electrochemical characterizations of $LaMO_3$ (M = Co, Mn, Fe, and Ni) and partially substituted $LaNi_xM_{1-x}O_3$ (x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution", J. Appl. Electrochem., Vol. 45, 2015, p. 313. https://doi.org/10.1007/s10800-015-0798-z
  13. F.A.L. Dullien : "Porous Media: Fluid Transport and Pore Structure", Academic Press, New York, 1992.
  14. J. Geertsma : "Estimating the coefficient of inertial resistance in fluid flow through porous media", Soc. Pet. Eng. J., Vol. 10, 1974, p. 445.
  15. J. Shim, C. Han, H.J. Sun, G. Park : "Preparation and Characterization for Carbon Composite Gas Diffusion Layer on Polymer Electrolyte Membrane Fuel Cells", Trans. Kor. Hydrogen New Energy Soc., Vol. 23, 2012, p. 34. https://doi.org/10.7316/khnes.2012.23.1.034
  16. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita, K. Ishikawa : "Electrical conductivity of carbon-polymer composites as a function of carbon content", J. Mater. Sci., Vol. 17, 1982, p. 1610. https://doi.org/10.1007/BF00540785
  17. O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, H. Warth : "Mechanical properties and electrical conductivity of carbonnanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene", Polymer, Vol. 45, 2004, p. 739. https://doi.org/10.1016/j.polymer.2003.12.013
  18. C. Han, I.T. Kim, H.J. Sun, G. Park, J.J. Lee, H.K. Lee, J. Shim : "Effect of Carbon Content on the Physical Properties of Carbon Composite Gas Diffusion Layer in PEMFCs", Int. J. Electrochem. Sci., Vol. 7, 2012, p. 8627.
  19. A.W. Adamson : "Physical Chemistry of Surfaces", John Wiley and Sons, New York (1982).
  20. J.T. Gostick, M.W. Fowler, M.A. Ioannidis, M.D. Pritzker, Y.M. Volfkovich, A. Sakars : "Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells", J. Power Sources, Vol. 156, 2006, p. 375. https://doi.org/10.1016/j.jpowsour.2005.05.086
  21. T. Hang, A. Hu, H. Ling, M. Li, D. Mao : "Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition", Appl. Surf. Sci., Vol. 256, 2010, p. 2400. https://doi.org/10.1016/j.apsusc.2009.10.074
  22. J. Shim, Y.S. Park, H.K. Lee, J.S. Lee : "Hydrogen oxidation characteristics of Raney nickel electrodes with carbon black in an alkaline fuel cell", J. Power Sources, Vol. 74, 1998, p. 151. https://doi.org/10.1016/S0378-7753(98)00060-3
  23. J. Kim, Y. Lee : "Preparation of Electrode Using Ni-PTFE Composite Plating for Alkaline Fuel Cell", Trans. Kor. Hydrogen New Energy Soc., Vol. 20, 2009, p. 361.
  24. F. Bidault, D.J.L Brett, P.H. Middleton, N.P. Brandon : "Review of gas diffusion cathodes for alkaline fuel cells", J. Power Sources, Vol. 187, 2009, p. 39. https://doi.org/10.1016/j.jpowsour.2008.10.106
  25. M. Jeong, K. Song, T. Cho, W. Choi : "Water Repellent Coating of GDL with Different Concentration of Nano-sized PTFE Solution", Trans. Kor. Hydrogen New Energy Soc., Vol. 20, 2009, p. 323.

Cited by

  1. ) Derived from Co/Ni-MOF for Bifunctional Catalysts in Rechargeable Zn-Air Batteries pp.12295949, 2018, https://doi.org/10.1002/bkcs.11603