• Title/Summary/Keyword: conductive additive

Search Result 48, Processing Time 0.031 seconds

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors (유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향)

  • Yang, Inchan;Lee, Gihoon;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.696-703
    • /
    • 2016
  • In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Yang, Inchan;Kwon, Soon Hyung;Kim, Bum-Soo;Kim, Sang-Gil;Lee, Byung-Jun;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.132-137
    • /
    • 2015
  • The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.

Study on the Formation Mechanism of Electroless Plating Seeds on Polymer by Laser (레이저에 의한 폴리머상의 무전해 도금 시드 형성 메커니즘 연구)

  • Paik, Byoung-Man;Lee, Jae Hoon;Shin, Dong-Sig;Lee, Kun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • The LDS(Laser Direct Structuring) is one of the new direct writing methods to fabricate conductive patterns by energy beam. It uses thermoplastic polymers with an additive compound that serves as plating seed after the activation by laser. The advantages of LDS include the miniaturization of electrical components, design flexibility, and a reduced number of production steps. The purpose of this study is to investigate the fundamental mechanism for LDS and the characteristics of conductive patterns by laser parameters. These results were studied by SEM, EDX, and XPS analysis. We have used a 20W pulse-modulated fiber laser and copper electroless plating to fabricate conductive patterns on polymer. The result showed that electroless copper plating seed caused the laser cracking of additive compound. In particular, the additive compound contained in copper metal oxides atoms will be changed to copper metal elements. Also, the characteristics of conductive patterns were dependent on laser parameter, especially laser fluence.

Development of Carbon Nanotube-copper Hybrid Powder as Conductive Additive

  • Lee, Minjae;Ha, Seoungjun;Lee, Yeonjoo;Jang, Haneul;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.291-295
    • /
    • 2018
  • A conductive additive is prepared by dispersing multi-walled carbon nanotubes (MWCNTs) on Cu powder by mechanical milling and is distributed in epoxy to enhance its electrical conductivity. During milling, the MWCNTs are dispersed and partially embedded on the surface of the Cu powder to provide electrically conductive pathways within the epoxy-based composite. The degree of dispersion of the MWCNTs is controlled by varying the milling medium and the milling time. The MWCNTs are found to be more homogeneously dispersed when solvents (particularly, non-polar solvent, i.e., NMP) are used. MWCNTs gradually disperse on the surface of Cu powder because of the plastic deformation of the ductile Cu powder. However, long-time milling is found to destroy the molecular structure of MWCNTs, instead of effectively dispersing the MWCNTs more uniformly. Thus, the epoxy composite film fabricated in this study exhibits a higher electrical conductivity than 1.1 S/cm.

Effects of Morphologies of Carbon Nanomaterials on Conductivity of Composites Containing Copper/Carbon Nanomaterial Hybrid Fillers (탄소 나노 물질의 형상에 따른 구리/탄소나노물질 하이브리드 필러의 전도성 향상 거동 분석)

  • Lee, Yeonjoo;Hong, Sung-uk;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.435-440
    • /
    • 2018
  • In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.

TSV Filling Technology using Cu Electrodeposition (Cu 전해도금을 이용한 TSV 충전 기술)

  • Kee, Se-Ho;Shin, Ji-Oh;Jung, Il-Ho;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2014
  • TSV(through silicon via) filling technology is making a hole in Si wafer and electrically connecting technique between front and back of Si die by filling with conductive metal. This technology allows that a three-dimensionally connected Si die can make without a large number of wire-bonding. These TSV technologies require various engineering skills such as forming a via hole, forming a functional thin film, filling a conductive metal, polishing a wafer, chip stacking and TSV reliability analysis. This paper addresses the TSV filling using Cu electrodeposition. The impact of plating conditions with additives and current density on electrodeposition will be considered. There are additives such as accelerator, inhibitor, leveler, etc. suitably controlling the amount of the additive is important. Also, in order to fill conductive material in whole TSV hole, current wave forms such as PR(pulse reverse), PPR(periodic pulse reverse) are used. This study about semiconductor packaging will be able to contribute to the commercialization of 3D TSV technology.

Effect of Conductive Additives in La0.8Sr0.2MnO3 Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution (알칼리용액에서 La0.8Sr0.2MnO3 페롭스카이트 촉매의 산소환원 및 발생반응에서 도전재의 영향)

  • SHIM, JOONGPYO;LOPEZ, KAREEN J.;YANG, JIN-HYUN;SUN, HO-JUNG;PARK, GYUNGSE;EOM, SEUNGWOOK;LEE, HONG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 2016
  • The effects of conductive additives in a $La_{0.8}Sr_{0.2}MnO_3$ perovskite bifunctional electrode for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated in an alkaline solution. Highly porous carbon black (CB) and Ni powder were added to the bifunctional electrodes as conductive additives. The surface morphologies of electrodes containing CB and Ni were observed by scanning electron microscopy (SEM). The current densities for both ORR and OER were changed by the addition of CB. The conductive additive changed physical properties of bifunctional electrodes such as the sheet conductance, gas permeability and contact angle. It was observed that the air permeability of electrode was most effective to enhance the currents for ORR and OER.

Composited Conductive Materials for Enhancing the Ultrafast Performance for Anode in Lithium-Ion Battery (리튬이온전지 음극의 고속 성능 향상을 위한 도전재 복합화)

  • Ki-Wook, Sung;Hyo-Jin, Ahn
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.474-480
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.

Study on Electrical Characteristics of FDM Conductive 3D Printing According to Annealing Conditions (FDM 3D 전도성 프린팅 어닐링 조건 따른 전기적 특성 연구)

  • Lee, Sun Kon;Kim, Yong Rae;Yoo, Tae Jung;Park, Ji Hye;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, the effect of different 3D printing parameters including laminated angle and annealing temperature is observed their effect on FDM conductive 3D printing. In FDM 3D printing, a conductive filament is heated quickly, extruded, and then cooled rapidly. FDM 3D Print conductive filament is a poor heat conductor, it heats and cools unevenly causing the rapid heating and cooling to create internal stress. when the printed conductive specimens this internal stress can be increase electrical resistance and decrease electrical conductivity. Therefore, This experiment would like to use annealing to remove internal stress and increase electrical conductivity. The result of experiment when 3D printing conductive specimen be oven cooling of annealing temperature $120^{\circ}C$ electrical resistance appeared decrease than before annealing. So We have found that 3D printing annealing removes internal stresses and increases the electrical conductivity of printed specimens. These results are very useful for making conductive 3D printing electronic circuit, sensor ect...with electrical conductance suitable for the application.

Effects of Nanopowder Additives in Micro-electrical Discharge Machining

  • Tan, Peng-Cheong;Yeo, Swee-Hock;Tan, Yie-Voon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.22-26
    • /
    • 2008
  • The use of electrical discharge machining (EDM) for micro-machining applications requires particular attention to the machined surface roughness and discharge gap distance, as these factors affect the geometrical accuracy of micro-parts. Previous studies of conventional EDM have shown that selected types of semi-conductive and non-conductive powder suspended in the dielectric reduced the surface roughness while ensuring a limited increase in the gap distance. Based on this, an extension of the technique to micro-EDM was studied Such work is necessary since the introduction of nanopowders suspended in the dielectric is not well understood. The experimental results showed that a statistically significant reduction in the surface roughness value was achieved at particular concentrations of the powder additives, depending on the powder material and the machining input energy setting. The average reduction in surface roughness using a powder suspended dielectric was between 14-24% of the average surface roughness generated using a pure dielectric. Furthermore, when these additive concentrations were used for machining, no adverse increase in the gap distance was observed.