• Title/Summary/Keyword: nano chitosan

Search Result 65, Processing Time 0.023 seconds

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

Effect of Humidity on the Electrospinning of Chitosan Solution (키토산 용액의 전기방사에 있어 습도의 영향)

  • Lee, Jin-Ah;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.273-274
    • /
    • 2003
  • Chitin and chitosan have a wide range of application on the environmental and biomedical engineering by their biocompatibility, biodegradability, non-toxicity and adsorption property, etc. The efforts of manufacturing chitosan fibers are continuously maintained until now$\^$l.2)/. Electrospinning is new method to produce the nano-sized fibers for medical uses. Recently, formation of chitosan fiber using electrospinning is studied by many textile researchers. (omitted)

  • PDF

A Study on the Effect of Chitin, Chitosan and Dithiocarbamate Chitosan on the Nickel Toxicity in Rat liver

  • Yoo, Il-Sou;Choi, Kyung-Soon;Ryu, Mun-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • This study was performed to investigate the effects of Chitosan on the nickel poisoning in rats. In the study, 150 male Sprague-Dawley were used. The experimental groups were divided into four: A (30 mg/L nickel), B (30 mg/L nickel+0.2% Chitin, Chitosan and Dithiocarbamate Chitosan), C (30 mg/L nickel+0.4% Chitin, Chitosan and Dithiocarbamate Chitosan), D (30 mg/L nickel+0.8%Chitin, Chitosan and Dithiocarbamate Chitosan). The results were as flows; 1. The nickel concentration in the livers of the control group (A) was $0.153{\sim}0.186\;mg/kg$ but the nickel concentration in the livers of the experimental decreased during the experimental period (P<0.05). 2. Metallothionenin levels in rat liver were $2.77{\sim}3.25\;ug/g$ wet,wt in control group (A), but were $2.89{\sim}3.51\;ug/g$ wet,wt (B), $2.97{\sim}3.62\;ug/g$ wet,wt (C), $2.68{\sim}3.68\;ug/g$ wet,wt (D). Respectively in the experimental groups. The experimental groups were inclined to increase compare to the control group (P<0.05). In conclusion, this study revealed a preventive effect of Chitin, Chitosan and Dithiocarbamate Chitosan against nickel toxicity.

Fabrication of Cross-linked Nano-Fibrous Chitosan Membranes and Their Biocompatibility Evaluation

  • Nguyen, Thi-Hiep;Lee, Seong-Jin;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • Fibrous chitosan membranes were fabricated as a substrate for skin applications using an electro-spinning process with different solvents and varying concentrations. Scanning electron microscopy (SEM) images confirmed that the formation of the chitosan fibrous membrane in trifluoroacetic acid was better than that in acetic acid. Fourier transform infrared spectroscopy showed that the chitosan fibers were cross-linked with glutaraldehyde, and that the cytotoxicity of the aldehyde groups was reduced by glycine and washing by NaOH and DI water. Chitosan cross-linked fibrous membranes were insoluble in water and could be washed thoroughly to wash away glycine and excess NaOH and prevent the infiltration of other water soluble bio-toxic agents using DI water. MTT assay method was employed to test the cytotoxicity of chitosan membranes during fabricating, treating and washing processes. After the dehydration of cell cultured chitosan membranes, cell attachment behavior on the material was evaluated using SEM method. Effect of the treatment processes on the biocompatibility of the chitosan membranes was shown by comparing of filopodium and lamellipodium of fibroblast cells on grown washed and unwashed chitosan fibrous membrane. The MTT assay and SEM morphology confirmed that the washed chitosan fibrous membrane increased cell attachment and cell growth, and decreased toxicity compared to results for the unwashed chitosan fibrous membrane.

Application of nanochitosan in food industry: a review (나노키토산의 식품분야에서의 이용)

  • Yu, Ji Young;Ko, Jung A;Park, Hyun Jin;Kim, Hyun Woo
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.56-68
    • /
    • 2020
  • Recently, chitosan has increased attention in commercial applications in the food industry in terms of its biocompatibility and nontoxicity. In particular, chitosan has been used as a good hosting material for producing nanoparticles due to its unique property of ionic gelation. Chitosan has disadvantages such as low solubility at physiological pH, causing the metabolism of core material in the intestine and gastric juice. To overcome these limitations, various chitosan derivatives such as carboxylated, thiolated, and acylated chitosan have been studied. This review focuses on the changes in the physicochemical properties of chitosan nanoparticles with the introduction of hydrophobic groups, the application of functional nanocapsules as coatings, and their applicability in the food sector. The physicochemical modification of chitosan is expected to be an attractive research field for the development of chitosan applications for food as well as for improving bioavailability in functional food.

Effect of Chitosan-Added on the Quality Characteristics of Maribo Cheese (키토산을 첨가한 마리보 치즈의 품질 특성)

  • Lee, Jai Sung;Jeong, Yu Tae;Kwak, Hae Soo;Bae, Inhyu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • Chitosan provides beneficial effects such as decrease in cholesterol, weight loss, and antioxidative effects. The manufacture of Maribo cheese containing powdered chitosan (CP) or nanopowdered chitosan (NCP) is not yet established. Thus, this study was conducted to determine the effect of CP and NCP on Maribo cheese's physicochemical properties. The curd was added with 0.2 and 0.5% of CP and NCP, respectively, after the second whey drainage. The pH changed and the lactic acid bacterial population decreased in all treatments. Additionally, WSN and TBA gradually increased during the ripening of cheese. The TP of control cheese was higher than that of another group. On the basis of the obtained results, consumer preference test on overall acceptability of 0.2% NCP was good-41%, great good 13%. It was concluded that the quality of Maribo cheese was not affected by adding chitosan. Furthermore, 0.2% NCP was preferred during cheese ripening and observed the possibility of functional cheese than another group.

  • PDF

Characterization and Preparation of Low Molecular Weight Water Soluble Chitosan Nanoparticle Modified with Cell Targeting Ligand for Efficient Gene Delivery (효과적인 유전자전달을 위한 표적성 리간드가 도입된 저분자량 수용성 키토산 나노입자의 제조 및 특성)

  • Heo, Sun-Heang;Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.454-459
    • /
    • 2007
  • Gene therapy using low molecular weight water soluble chitosan (LMWSC) as polycationic polymer shows good biocompatibility, but low transfection efficiency. The mechanism of folic acid (FA) uptake in the cells to promote targeting and internalization could improve transfection rates. The objective of this study was to synthesize and characterize the WSCFA-DNA complex and evaluate their cytotoxicity, in vitro. In $^1H-NMR$ spectra, specific peaks appeared both of FA and LMWSC in $D_2O$. WSCFA nanoparticles have spherical shapes with particle size show below 110 nm. In the cell cytotoxicity test, the WSCFA-DNA complex showed high cell viability, in vitro. Gel electrophoresis showed condensed DNA within the carriers. hi vitro transfection efficiency was assayed by fluorescence spectroscopy WSCFA nanoparticles have less cytotoxicity, good DNA condensation and particle size around 110 nm, which makes them a promising candidate as a non-viral gene vector.

Adsorption mechanism of copper ions on porous chitosan membranes: Equilibrium and XPS study

  • Ghaee, Azadeh;Zerafat, Mohammad Mahdi
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.555-571
    • /
    • 2016
  • Heavy metal contamination has attracted considerable attention during recent decades due to the potential risk brought about for human beings and the environment. Several adsorbent materials are utilized for the purification of contaminated water resources among which chitosan is considered as an appropriate alternative. Copper is a heavy metal contaminants found in several industrial wastewaters and its adsorption on porous and macroporous chitosan membranes is investigated in this study. Membranes are prepared by phase inversion and particulate leaching method and their morphology is characterized using SEM analysis. Batch adsorption experiments are performed and it is found that copper adsorption on macroporous chitosan membrane is higher than porous membrane. The iso-steric heat of adsorption was determined by analyzing the variations of temperature to investigate its effect on adsorption characteristics of macroporous chitosan membranes. Furthermore, desorption experiments were studied using NaCl and EDTA as eluants. The mechanism of copper adsorption was also investigated using XPS spectroscopy which confirms simultaneous occurrence of chelation and electrostatic adsorption mechanisms.

Food application of enzymes derived from microorganisms degrading chitin and chitosan (키틴과 키토산 분해 미생물 유래 효소의 식품에의 이용)

  • Park, Jae Kweon
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.43-55
    • /
    • 2020
  • Most reports demonstrated the substrate specificity-based kinetic properties of chitin or chitosan degrading enzymes. However, there is virtually less information on the high quality and quantity production of chitin or chitosan hydrolysates having a larger than (GlcN)7 from the hydrolysis of high molecular weight chitosan using specific enzymes and their biological activity. Therefore, the production of such molecules and the discovery of such enzyme sources are very important. Fortunately, the author has established a mass production method of chitosan hydrolysates (GlcN)n, n=2-13 that have been characterized as a potent antioxidant substance, as well as antifungal and antibacterial activities against Penicillium species and highly selective pathogenic bacteria. In addition, preclinical studies using (GlcN)n, n=5-25 demonstrated that these molecules played a very important role in maintaining biometric balance. Collectively, it is implicated that the application of these mixed substances to foods with significant biological activity is very encouraging.

Chitosan-Cu-salen/Carbon Nano-Composite Based Electrode for the Enzyme-less Electrochemical Sensing of Hydrogen Peroxide

  • Jirimali, Harishchandra Digambar;Saravanakumar, Duraisamy;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.169-175
    • /
    • 2018
  • Cu-Salen complex was prepared and attached into chitosan (Cs) polymer backbone. Nanocomposite of the synthesized polymer was prepared with functionalized carbon nano-particles (Cs-Cu-sal/C) to modify the electrode surface. The surface morphology of (Cs-Cu-sal/C) nanocomposite film showed a homogeneous distribution of carbon nanoparticles within the polymeric matrix. The cyclic voltammogram of the modified electrode exhibited a redox behavior at -0.1 V vs. Ag/AgCl (3 M KCl) in 0.1 M PB (pH 7) and showed an excellent hydrogen peroxide reduction activity. The Cs-Cu-sal/C electrode displays a linear response from $5{\times}10^{-6}$ to $5{\times}10^{-4}M$, with a correlation coefficient of 0.993 and detection limit of $0.9{\mu}M$ (at S/N = 3). The sensitivity of the electrode was found to be $0.356{\mu}A\;{\mu}M^{-1}\;cm^{-2}$.