• Title/Summary/Keyword: nafion

Search Result 376, Processing Time 0.026 seconds

Research Trend of Polymeric Ion-Exchange Membrane for Vanadium Redox Flow Battery (바나듐계 레독스 흐름 전지용 고분자 이온교환막의 연구개발 동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.285-300
    • /
    • 2012
  • Vanadium redox flow battery is believed to be one of important energy storage technologies, because it has many advantages, including long cycle life, high energy efficiency, low cost of maintenance, and environmental friendship. As one of the key components of vanadium redox flow battery system, an ion exchange membrane is required to prevent cross-mixing of the positive and negative electrolytes while allowing ionic continuity. However, ion exchange membrane such as Nafion using in VRBs still face some challenges in meeting performance and cost requirements for broad penetration. Therefore, to resolve these problems, developed various ion exchange membranes are investigated and compared with Nafion membranes in terms of their performance in vanadium redox flow battery.

Mechanical Property of Nafion Membrane Incorporated with Pd Nanocatalyst and the Performance of PEMFC (Pd 나노 촉매가 도입된 나피온 막의 기계적 강도 및 고분자 전해질막 연료전지 (PEMFC) 성능)

  • LEE, WOOKUM;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.270-275
    • /
    • 2016
  • A simple solid state incorporation method was employed in order to incorporate Pd nanocatalyst into a Nafion film for polymer electrolyte membrane fuel cell (PEMFC) via the reduction of palladium (II) bis (acetylacetonate), $Pd(acac)_2$. It was sublimed, penetrated into Nafion film and then reduced to Pd nanoparticles simultaneously in a glass reactor of N2 atmosphere at $180^{\circ}C$ for 1, 3 and 5 min. This reaction was took place without any reducing agent and any solvent. The morphology of the Pd nanoparticles was observed by transmission electron microscopy (TEM), and Pd distribution was analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). And 23% modification of tensile strength of Pd/Nafion composite film was measured by universal testing machine and I-V curve was estimated by using a unit cell with $5{\times}5cm^2$ active area.

A Study on the Fabrication of a Membrane Type Micro=Actuator Using IPMC(Ionic Polymer-Metal Composite) for Micro-Pump Application (마이크로 펌프 응용을 위한 이온성 고분자-금속 복합체를 이용한 멤브레인형 마이크로 액추에이터 제작에 관한 연구)

  • 조성환;이승기;김병규;박정호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.298-304
    • /
    • 2003
  • IPMC(Ionic Polymer-Metal Composite) is a highly sensitive actuator that shows a large deformation in presence of low applied voltage. Generally, IPMC can be fabricated by electroless plating of platinum on both sides of a Nafion (perfluorosulfonic acid) film. When a commercial Nafion film is used as a base structure of the IPMC membrane, the micro-pump structure and the IPMC membrane are fabricated separately and then later assembled, which makes the fabrication inefficient. Therefore, fabrication of an IPMC membrane and the micro-pump structure on a single wafer without the need of assembly have been developed. The silicon wafer was partially etched to hold liquid Nafion to be casted and a 60-${\mu}{\textrm}{m}$ thick IPMC membrane was realized. IPMC membranes with various size were fabricated by casting and they showed 4-2${\mu}{\textrm}{m}$ displacements from $4mm{\times}4mm$ , $6mm{\times}6mm$, $8mm{\times}8mm$ membranes at the applied voltage ranging from 2Vp-p to 5Vp-p at 0.5Hz. The displacement of the fabricated IPMC membranes is fairly proportional to the membrane area and the applied voltage.

Fabrication Process and Characterization of Sonic Polymer-Metal Composite Actuators by Electroless Plating of Platinum (백금의 무 전해 도금에 의한 이온성 고분자-금속 복합물 액추에이터의 제작 공정 및 특성 측정)

  • Cha, Seung-Eun;Park, Jeong-Ho;Lee, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.455-463
    • /
    • 2002
  • Ionic Polymer metal composite(IPMC), one of new actuation materials of EAPs is fabricated by electroless plating of platinum on both sides of the perfluorosulfonic acid film or Nafion film and its electromechanical characteristics are investigated. The IPMC strip bends towards anode under electrical field. As the number of plating cycle increases, the distance between plated platinum electrodes on both sides of Nafion membrane decreases and also the displacement is almost inversely proportional to the number of plating. The displacement of IPMC strip depends on voltage magnitude and applied signal frequency and its maximum deformation is observed at a critical frequency, resonant frequency. Low pressure sandblasting is used for surface treatment of Nafion membrane and at 8 times of plating cycle produced actuator with high displacement performance. For more efficiency of fabricated IPMC, it is useful to add one or two surface developing step which is the second reduction process using hydrazine.

A Study on the Change of Mechanical Property According to the Aging of Polymer Electrolyte Membrane (고분자전해질막의 노후화에 따른 기계적 특성 변화에 관한 연구)

  • KIM, SEUNGHWAN;EO, JUNWOO;SEO, YOUNGJIN;HWANG, CHULMIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.176-182
    • /
    • 2022
  • Since the various characteristics of the polymer electrolyte membrane are not clearly identified, it is difficult to predict and design applications for various conditions. In this study, as a previous study on the aging of the polymer electrolyte membrane, a study was conducted on the change of mechanical properties according to the aging of the polymer electrolyte membrane. Through the tensile test of Nafion 117, the mechanical properties change due to aging was confirmed. As a result of the tensile test, it was confirmed that the aged Nafion 117 had reduced tensile strength. Through DSC measurement, aged Nafion confirmed that the glass transition temperature and enthalpy change were low, which is thought to be the effect of molecular motion and transition due to the lapse of time. The effect is thought to cause a difference in the amount of change in enthalpy, resulting in a difference in mechanical properties during tension.

A Strip Sensor Based on PbO2/Carbon Paste Electrode to Determine Sweetener Contents in Fruits (이산화납/탄소 반죽 전극을 이용한 과당 농도 측정 스트립센서)

  • Lee, Jae Seon;Cho, Joo Young;Heo, Min;Lim, Woo-Jin;Lee, Sang Eun;Nam, Hakhyun;Cha, Geun Sig;Shin, Jae Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • A strip sensor based on $PbO_2$/carbon paste electrode was prepared by a screen-printing method, and employed to electrochemically determine the concentration of fruit sweeteners(i.e. glucose, sucrose, and fructose). The $PbO_2$/carbon paste electrode could monitor electrocatalytic oxidation of organic compounds such as carbohydrates, and measure the levels of natural sweeteners without enzyme. Severe interference from ascorbic acid was effectively reduced by modifying the electrode surface with a Nafion membrane. The response level of the Nafion/$PbO_2$/carbon paste electrode increased in the order of fructose, sucrose, and glucose, which corresponds to the order of sweetness perceived by humans.

Durability of Cation Exchange Membrane Containing Psf (polysulfone) in the All-vanadium Redox Flow Battery (Psf (polysulfone) 함유 양이온교환막의 바나듐 레독스-흐름 전지에서의 내구성)

  • Kim, Joeng-Geun;Kim, Jae-Chul;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • The cation exchange membrane using TPA (tungstophosphoric acid) and the block co-polymer of polysulfone and polyphenylenesulfidesulfone was prepared for a separator of all-vanadium redox flow battery. The membrane resistance of the prepared cation exchange membrane in 1mol/L $H_2SO_4$ aqueous solution was measured. The membrane resistance of the prepared Psf-PPSS and Psf-TPA-PPSS cation exchange membrane was about $0.94{\Omega}{\cdot}cm^2$. Electrochemical property of all-vanadium redox flow battery using the prepared cation exchange membrane was measured. The measured charge-discharge cell resistance of V-RFB at 4 A decreased in the order; Nafion117 < Psf-TPA-PPSS < Psf-PPSS. The durability of membrane was earried out by soaking it in $VO_2{^+}$ solution and evaluated by measuring the charge-discharge cell resistance of V-RFB with an increase of soaking time. The prepared Psf-PPSS cation exchange membrane had high durability and Psf-TPA-PPSS cation exchange membrane had almost same durability compared with Nafion117.

A New Preparation Method of Nafion/Mordenite Composite Membrane for Polymer Electrolyte Membrane Fuel Cell above 100℃ Operation (100℃ 이상에서 작동하는 고분자 전해질형 연료전지용 나피온/Mordenite 복합체 막의 새로운 제조 방법)

  • 곽상희;양태현;김창수;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.159-166
    • /
    • 2003
  • The preparation method for composite membranes of high temperature operation above $100^{\circ}C$ for Polymer Electrolyte Membrane Fuel Cells (PEMFCs ) was presented, using perfluorosulfonylfluoride Nafion resin and mordenite, in addition to the physical properties, proton conductivity and single cells performance for it. The composite membranes were fabricated via melting of Nafion resin with various mordenite content. As the increase of mordenite content, at high temperature range, proton conductivity of the composite membrane increased due to the late dehydration rate of existent water in the mordenite. Also, from the result of the current-voltage relationship for single cells under $130^{\circ}C$ operation condition, the composite membrane cell with l0 wt% mordenite content showed better performance than that of the others over the entire current density range. This result indicated that the existent water in the composite membrane with l0 wt% mordenite content was higher than that with the others, thereby maintains its conductivity. Based upon the results of experiments, therefore, a Nafion/mordenite composite membrane prepared by this work is thought to be a satisfactory polymer electrolyte membrane for PEMFC operation above $100^{\circ}C$.

Electrospun Poly(Ether Sulfone) Membranes Impregnated with Nafion for High-Temperature Polymer Electrolyte Membrane Fuel Cells

  • Lee, Hong Yeon;Hwang, Hyung Kwon;Lee, Jin Goo;Jeon, Yukwon;Park, Dae-Hwan;Kim, Jong Hak;Shul, Yong-Gun
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.9-13
    • /
    • 2016
  • Electrospun poly(ether sulfone) (PES) membrane impregnated with Nafion (PES-N) have been developed for high-temperature polymer-electrolyte membrane fuel cell (HT-PEMFC). The PES-N obtains highly thermal stability up to $430^{\circ}C$, which is higher than that of the commercial Nafion 212. The PES-N membrane shows a good proton conductivity of about $10^{-2}S\;cm^{-1}$ in a temperature range from $75^{\circ}C$ to $120^{\circ}C$. The membrane-electrode assembly (MEA) with the PES-N membrane exhibits a current density of $1.697A\;cm^{-2}$ at $75^{\circ}C$, and $0.813A\;cm^{-2}$ at $110^{\circ}C$ when the applied voltage is 0.6 V, whereas the MEA with the Nafion 212 membrane shows the current density of $0.647Acm^{-2}$ at $110^{\circ}C$. The results suggest that the PES-N can be a good candidate for a polymer electrolyte membrane of the HT-PEMFC.

Study on Effect of Increase in Inlet Temperature on Nafion Membrane Humidifier (입구온도 변화가 중공사형 나피온 막가습기의 성능에 미치는 영향에 대한 연구)

  • Hwang, Jun-Young;Chang, Hyo-Sun;Kang, Kyung-Tae;Kang, Heui-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.361-369
    • /
    • 2011
  • The effect of an increase in the temperature of inlet air on the performance of a membrane humidifier for a PEMFC (Polymer Electrolyte Membrane Fuel Cell) vehicle was investigated both experimentally and numerically. A shell-and-tube type gas-to-gas humidifier with Nafion membrane was tested. The experimental result showed that water transfer varies nonlinearly with the temperature elevation. Numerical analysis based on detailed modeling was also conducted in simplified geometry of a single tube to explain this nonlinear behavior. The simulation revealed that the local water flux varies nonlinearly and dramatically along the tube. The analysis was based on the inverse relationship between the increase in temperature and decrease in relative humidity, both of which seriously affect the water conductivity of the membrane.