DOI QR코드

DOI QR Code

Electrospun Poly(Ether Sulfone) Membranes Impregnated with Nafion for High-Temperature Polymer Electrolyte Membrane Fuel Cells

  • Lee, Hong Yeon (Department of Chemical and Bio-molecular Engineering, Yonsei University) ;
  • Hwang, Hyung Kwon (Department of Chemical and Bio-molecular Engineering, Yonsei University) ;
  • Lee, Jin Goo (Department of Chemical and Bio-molecular Engineering, Yonsei University) ;
  • Jeon, Yukwon (Department of Chemical and Bio-molecular Engineering, Yonsei University) ;
  • Park, Dae-Hwan (Department of Chemical and Bio-molecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Bio-molecular Engineering, Yonsei University) ;
  • Shul, Yong-Gun (Department of Chemical and Bio-molecular Engineering, Yonsei University)
  • Received : 2016.01.11
  • Accepted : 2016.01.13
  • Published : 2016.02.29

Abstract

Electrospun poly(ether sulfone) (PES) membrane impregnated with Nafion (PES-N) have been developed for high-temperature polymer-electrolyte membrane fuel cell (HT-PEMFC). The PES-N obtains highly thermal stability up to $430^{\circ}C$, which is higher than that of the commercial Nafion 212. The PES-N membrane shows a good proton conductivity of about $10^{-2}S\;cm^{-1}$ in a temperature range from $75^{\circ}C$ to $120^{\circ}C$. The membrane-electrode assembly (MEA) with the PES-N membrane exhibits a current density of $1.697A\;cm^{-2}$ at $75^{\circ}C$, and $0.813A\;cm^{-2}$ at $110^{\circ}C$ when the applied voltage is 0.6 V, whereas the MEA with the Nafion 212 membrane shows the current density of $0.647Acm^{-2}$ at $110^{\circ}C$. The results suggest that the PES-N can be a good candidate for a polymer electrolyte membrane of the HT-PEMFC.

Keywords

References

  1. Q. Yan, H. Toghiani, and H. Causey, 'Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes' J. Power Sources., 161, 492 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.077
  2. B. Smitha, S. Sridhar, and A. A. Khan, 'Solid polymer electrolyte membranes for fuel cell applications-a review' J. Membr. Sci., 259, 10 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
  3. H. L. Tang and M. Pan, 'Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells' J. Phys. Chem. C, 112, 11556 (2008). https://doi.org/10.1021/jp711643c
  4. J. Hu, J. Luo, P. Wagner, O. Conrad, and C. Agert, 'Anhydrous proton conducting membranes based on electron-deficient nanoparticles/PBI-OO/PFSA composites for high-temperature PEMFC' Electrochem. Comm., 11, 2324 (2009). https://doi.org/10.1016/j.elecom.2009.10.020
  5. Y. Fu, A. Manthiram, and M. D. Guiver, 'Acid-base blend membranes based on 2-amino-benzimidazole and sulfonated poly (ether ether ketone) for direct methanol fuel cells' Electrochem. Comm., 9, 905 (2007). https://doi.org/10.1016/j.elecom.2006.12.001
  6. H. J. Kim, H. J. Kim, Y. G. Shul, and H. S. Han, 'Nafion-Nafion/polyvinylidene fluoride-Nafion laminated polymer membrane for direct methanol fuel cells' J. Power Sources., 135, 66 (2004). https://doi.org/10.1016/j.jpowsour.2004.04.001
  7. J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z Liu, and S. Holdcroft, 'High temperature PEM fuel cells' J. Power Sources., 160, 872 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.034
  8. M. M. Hasani-Sadrabadi, E. Dashtimoghadam, S. R. Ghaffarian, M. H. H. Sadrabadi, M. Heidari, and H. Moaddel, 'Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)' Renewable Energy., 35, 226 (2010). https://doi.org/10.1016/j.renene.2009.05.026
  9. D. Li and Y. Xia, 'Electrospinning of nanofibers: reinventing the wheel?' Adv. Mater., 16, 1151 (2004). https://doi.org/10.1002/adma.200400719
  10. S. W. Choi, J. R. Kim, Y. R. Ahn, S. M. Jo, and E. J. Cairns, 'Characterization of electrospun PVDF fiber-based polymer electrolytes' Chem. Mater., 19, 104 (2007). https://doi.org/10.1021/cm060223+
  11. S. W. Choi, Y.-Z. Fu, Y. R. Ahn, S. M. Jo, and A. Manthiram, 'Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells' J. Power Sources., 180, 167 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.042
  12. J. Yuk, S. Lee, T. Yang, and B. Bae, 'Synthesis and characterization of multi-block sulfonated poly (arylene ether sulfone) polymer membrane with different hydrophilic moieties for PEMFC' J. Korean Electrochem. Soc., 18, 75 (2015). https://doi.org/10.5229/JKES.2015.18.2.75
  13. X. Wang, C. Drew, S. -H. Lee, K. J. Senecal, J. Kumer, and L. A. Samuelson, 'Electrospun nanofibrous membranes for highly sensitive optical sensors' Nano Lett., 2, 1273 (2002) https://doi.org/10.1021/nl020216u
  14. P. P. Tasi, H. S. Gibson, and P. Gibson, 'Different electrostatic methods for making electret filters' J. Electrostat., 54, 333 (2002). https://doi.org/10.1016/S0304-3886(01)00160-7
  15. A. Li, W. Liang, and R. Hughes, 'The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane' J. Membr. Sci., 165, 135 (2000). https://doi.org/10.1016/S0376-7388(99)00223-9
  16. S. D. Mikhailenko, M. D. Guiver, S. Kaliaguine, 'Measurements of PEM conductivity by impedance spectroscopy' Solid State Ionics., 179, 619 (2008). https://doi.org/10.1016/j.ssi.2008.04.020