• Title/Summary/Keyword: nafion

Search Result 375, Processing Time 0.03 seconds

Characterization of Nafion/Pt/Polypyrrole Composite Membrane Prepared by Chemical In-situ Polymerization for DMFC (화학적 합성에 의해 제조된 직접 메탄올 연료전지용 나피온/백금/폴리피롤 복합 막의 특성 분석)

  • Park, Ho-Seok;Kim, Yo-Jin;Im, Hun-Suk;Choi, Bong-Gill;Hong, Won-Hi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.421-424
    • /
    • 2006
  • Nafion/Pt/Polypyrrole composite membranes were fabricated by chemical in-situ polymerization of pyrrole monomers with Pt precursors in Nafion matrix for DMFC. We demonstrated that positively charged pyrrolinum groups of polypyrrole particles were co-interacted with sulfonic groups of Nafion as verified by FT-IR results. Mutual interaction between $Nafion-SO_3^-$ (or negatively charged Pt precursors) and Polypyrrole$-NH_2^+$ influenced the physical properties of pristine Nafion. Thermal property proton conductivity, methanol permeability, and cell performance of pristine and modified Nafion were analyzed for an application of DMFC membrane. Thermal stabilities of sulfonic groups and side chains in Nafion/Pt/polypyrrole composite membranes were higher than those of Nafion due to mutual interaction between sulfonic groups of Nafion and pyrrolinum groups of polypyrrole. Methanol permeabilities of Nafion/Pt/Polypyrrole composite were reduced more proton conductivities with the increase in the content of Pt particles. As a result of that, the enhancement of cell performance by Nafion/Pt/Polypyrole O2 relative to Nafion was more pronounced under the specific experimental condition such as high temperature and more concentrated methanol solution.

  • PDF

Preparation of Pt impregnated Nafion self-humidifying membranes for PEMFC using supercritical $CO_2$ (초임계 함침법을 이용한 PEMFC용 Pt/Nafion 자가가습막의 제조 연구)

  • Synn, Woo-Kyun;Kim, Hwa-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.433-437
    • /
    • 2006
  • Pt/Nafion self-humidifying membranes for Polymer Electrolyte Membrane Fuel Cell(PEMFC) were synthesized via supercritical-impregnation methods. The Nafion 112 membranes were impregnated with Pt(II)$(acetylacetonate)_2$ from a supercritical carbon dioxide $(scCO_2)$ solution at $80^{\circ}C$ and 30MPa. After the impregnation, the pressure decreased slowly by releasing $CO_2$. And the Pt-impregnated Nafion membrane was converted Pt deposited Nafion membrane by reducing agent, sodium borohydride $(NaBH_4)$ with various concentrations under $50^{\circ}C$ and 2 hours. The prepared Pt-impregnated Nafion (Pt/Nafion) composite membrane were investigated by Electron Prove Micro analysis (EPMA) and X-rat Diffraction analysis (XRD) which showed distribution of Pt particle and Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) a which revealed morphology of surface of Pt/Nafion composite membrane. The performance of the Pt/Nafion 112 membranes was examined in PEMFC as aself-humidifyin membranes using purpose-built equipment.

  • PDF

Electrochemical Determination of Dopamine Based on Carbon Nanotube-Sol-Gel Titania-Nafion Composite Film Modified Electrode

  • Park, Ji-Ae;Kim, Byung-Kun;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3123-3127
    • /
    • 2010
  • A highly sensitive electrochemical detection method for dopamine (DA) has been developed by relying on a multiwalled carbon nanotube (CNT)-sol-gel titania-Nafion composite film modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards DA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric and amperometric responses for DA compared to those obtained with both titania-Nafion/GC and Nafion/GC electrodes. The CNT-titania-Nafion/GC electrode gave a linear response ($R^2$ = 0.999) for DA from $0.5\;{\mu}M$ to 0.5 mM with a detection limit (S/N = 3) of $0.1\;{\mu}M$ and a good sensitivity of 150 mA/M while other electrodes such as CNT-Nafion/GC, titania-Nafion/GC, and a bare GC gave a sensitivity of 89, 39, and 36 mA/M, respectively. Besides, the CNT-titania-Nafion/GC electrode displayed very fast response time within 2 s. The modified electrode showed good selectivity against ascorbic acid. The modified electrode showed good stability and reproducibility. The CNT-titania-Nafion/GC electrode was applied to the determination of DA in urine and serum samples.

Electrochemical Characteristics on Methanol Oxidation of Pt-Ru/PPy/Nafion Composite Electrode (Pt-Ru/PPy/Nafion 복합체 전극의 메탄을 산화 특성)

  • Cho Seung-Koo;Park Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.201-205
    • /
    • 2004
  • The Pt-Ru electrocatalyst was Prepared on Nafion membrane modified with Polypyrrole by chemical reduction of $H_2PtCI_6\;and\;RuCl_3$ solution ai precursor. From the electron dispersive microanalysis spectroscope(EDS), the Pt-Ru catalyst was located on the surface of Ppy/Nafion composite. The electrochemical oxidation of methanol on Pt-Ru catalyst deposited in Polypyrrole-impregnated Nafion was investigated by cyclic voltammetry (CV) and chronoamperometry. The onset potential of methanol oxidation was shifted to negative potential as the $RuCI_3$ concentration in deposition solution. Also, it was known that the Pt-Ru binary catalyst on Nafion could be directly deposited by using Polypyrrole and resulting Pt-Ru/PPy/Nafion was available for methanol oxidation.

Preparation of Hybrid Proton Conductor by Sol-Gel Process from Nafion Solution

  • Kim, Sang-Ock;Kim, Jeong-Soo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.174-177
    • /
    • 2002
  • Proton-conducting hybrid materials composed of silica and Nafion polymer were prepared from the sol-gel synthesis of silica in aqueous Nafion solution. The compositions of hybrid proton conductors were adjusted with the changing ratios of tetraethyl orthosilicate to Nafion. The thermal analysis, FTIR, SEM, and X-ray diffraction studies have proved the formation of Nafion/silica hybrid materials and no remarkable phase separation was observed, which led to an assumption that the macromolecular chain of silica and Nafion was homogeneously interlaned.

Ethanol Fermentation of Nafion-Catalyzed Hydrolyzates of Rice Straw by Pichia stipitis CBS 5776 (볏짚의 Nafion 가수분해물에 대한 Pichia stipitis CBS 5776의 에탄올 발효)

  • Chung, In-Sik;Chun, Jae-Kun
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.315-319
    • /
    • 1994
  • Use of a solid superacid (Nafion) in hydrolysis of rice straw was investigated focusing on the fermentability of the hydrolyzates by Pichia stipitis CBS 5776. Comparisons were made with the hydrolyzates produced by a conventional method of sulfuric acid treatment. The Nafion-catalyzed hydrolyzates of rice straw exhibited low level of inhibition for both cell growth and fermentation in comparison to the hydrolyzates produced by sulfuric acid. Pichia stipitis cells were able to produce ethanol by fermentation of Nafion-catalyzed hydrolyzates when the inoculum level exceeded 3.2 g dry cells/l.

  • PDF

Preparations of SPE Electrocatalysts Modified with Polypyrrole and Its Application for PEMFC (폴리피롤로 개질된 SPE 전극촉매의 제조 및 PEMFC로의 응용)

  • Kim, Jung-Hoon;Oh, Seung-Duck;Kim, Han-Sung;Park, Jong-Ho;Han, Jung-Woo;Lee, Kang Taek;Joe, Yung-Il
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.118-124
    • /
    • 2005
  • In this study, a novel deposition method of Pt catalysts onto Nafion membranes modified with polypyrrole (PPy) has been proposed for PEMFC application. The PPy/Nafion composite membranes were fabricated by chemical polymerization of pyrrole using $FeCl_3$ and $Na_2S_2O_8$ as initiator. The proton conductivity and water uptake of the chemically prepared PPy/Nafion composites were investigated. The ionic conductivity and water uptake of PPy/Nafion composite membrane prepared with $Na_2S_2O_8$ were decreased with polymerization time of pyrrole. In the case of $FeCl_3$, the ionic conductivity was almost retained and the water uptake was decreased with polymerization time of pyrrole. When the Pt particle was deposited on PPy/Nafion composites membrane by chemical reduction of $H_2PtCl_6$, the Pt loading on Nafion membrane was enhanced by polypyrrole due to electronic conduction property. The performance evaluation with membrane electrode assembly composed of Pt/PPy/Nafion composite and diffusion electrode was carried out using a single cell. As a result of fuel cell test, current density of $569mA/cm^2$ at 0.3 V has been obtained for MEA contained with Pt/PPy/Nafion composite. This study shows that direct deposition of Pt catalysts on Nafion impregnated polypyrrole is a promising method to prepare thin catalyst layer for the PEMFC.

Nafion Impregnated Electrospun Polyethersulfone Membrane for PEMFC (Nafion 용액 함침과 전기방사를 이용한 고분자 전해질 연료전지용 폴리에테르술폰 막)

  • Lee, Hong-Yeon;Hwang, Hyung-Kwon;Park, Sang-Sun;Choi, Sung-Won;Shul, Yong-Gun
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, we manufactured the membrane using the polyethersulfone (PES) of fiber by using the electrospinning method. The polymer electrolyte membrane for fuel cells was manufactured by impregnating Nafion solution to the porous PES membrane. We confirmed that electrospun PES membrane has higher thermal stability than Nafion 212 membrane by thermogravimetric analysis. Impregnated Nafion in the pores of the electrospun PES membrane was characterized by scanning electron microscopy. The AC impedance data shows the hydrogen ionic conductivity of $10^{-2}$ S/cm below $100^{\circ}C$. Nafion impregnated PES membrane shows the maximum performance at $90^{\circ}C$ showing current density of 389 mA/$cm^2$ at 0.6 V, while Nafion 212 membrane shows maximum at $75^{\circ}C$.

Characterization of Nafion/Poly(ether(amino sulfone)) Acid-base Blend Polymer Electrolyte Membranes for Direct Dimethyl Ether Fuel Cell (Nafion/poly(ether(amino sulfone)) 산-염기 블렌드 전해질막을 이용한 디메틸 에테르 직접연료전지 특성연구)

  • Park Sun-Mi;Choi Won-Choon;Nam Seung-Eun;Lee Kew-Ho;Oh Se-Young;Lee Chang-Jin;Kang Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Nafion/poly(ether(amino sulfone)) acid-base blend polymer electrolyte membranes were prepared and their proton conductivity and dimethyl ether permeability were investigated. Characteristics of direct dimethyl ether fuel cell (DDMEFC) performance using prepared blend membrane were studied. The increase of amine groups in the base polymer in composite membranes resulted in the decrease in dimethyl ether permeability. The proton conductivity of the blend membranes gradually increased as increasing temperature. The conductivity of Nafion/PEAS-0.6 (85:15) blend membranes was measured to be $1.42\times10^{-2}S/cm\;at\;120^{\circ}C$ which was higher than that of the recast Nafion. The performance of direct dimethyl ether fuel cell (DDMEFC) using the Nafion/PEAS blend membranes was higher than that using $Nafion^(R)115$ membrane. Enhanced performance of direct dimethyl ether fuel cells using Nafion/PEAS blend membrane was explained by reducing dimethyl ether (DME) crossover through the electrolyte membrane and maintenance of the proton conductivity at high temperature.

Effects of Nafion Contents on the Performance of MEAs Prepared by Decal-Transfer Method (Nafion 함량이 데칼전사기법을 통해 제작된 고분자 전해질 연료전지의 MEA 성능에 미치는 영향)

  • Kim, Gyeong-Hee;Cho, Eun-Ae;Han, Jong-Hee;Kim, Sung-Hyun;Eom, Kwang-Sup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Nafion ionomer located in electrode helps to increase the platinum utilization and proton conductivity. To achieve higher performance in PEMFCs, it is important an optimum Nafion content in the electrode. As the platinum loading and fabricated method depend on the optimum Nafion content. In this study, we have examined the interrelationship between platinum loading and Nafion content fabricated by decal transfer method. For electrodes with 0.25 and 0.4 mg/$cm^2$ Pt loading, best performance was obtained at 25 wt.% Nafion ionomer loading. It is also found that MEA with 0.25 mg/$cm^2$ Pt, the optimum Nafion content appears differently at low and high current density.