DOI QR코드

DOI QR Code

Characterization of Nafion/Poly(ether(amino sulfone)) Acid-base Blend Polymer Electrolyte Membranes for Direct Dimethyl Ether Fuel Cell

Nafion/poly(ether(amino sulfone)) 산-염기 블렌드 전해질막을 이용한 디메틸 에테르 직접연료전지 특성연구

  • Park Sun-Mi (Advanced Materials Division, Korea Research Institute of Chemical Technology, New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Choi Won-Choon (New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Nam Seung-Eun (New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Lee Kew-Ho (New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Oh Se-Young (Dept. of Chem. Engineering, Sogang University) ;
  • Lee Chang-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang Yong-Ku (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 박선미 (한국화학연구원 화학소재연구단, 한국화학연구원 신화학연구단) ;
  • 최원춘 (한국화학연구원 신화학연구단) ;
  • 남승은 (한국화학연구원 신화학연구단) ;
  • 이규호 (한국화학연구원 신화학연구단) ;
  • 오세용 (서강대학교 화공생명공학과) ;
  • 이창진 (한국화학연구원 화학소재연구단) ;
  • 강영구 (한국화학연구원 화학소재연구단)
  • Published : 2006.05.01

Abstract

Nafion/poly(ether(amino sulfone)) acid-base blend polymer electrolyte membranes were prepared and their proton conductivity and dimethyl ether permeability were investigated. Characteristics of direct dimethyl ether fuel cell (DDMEFC) performance using prepared blend membrane were studied. The increase of amine groups in the base polymer in composite membranes resulted in the decrease in dimethyl ether permeability. The proton conductivity of the blend membranes gradually increased as increasing temperature. The conductivity of Nafion/PEAS-0.6 (85:15) blend membranes was measured to be $1.42\times10^{-2}S/cm\;at\;120^{\circ}C$ which was higher than that of the recast Nafion. The performance of direct dimethyl ether fuel cell (DDMEFC) using the Nafion/PEAS blend membranes was higher than that using $Nafion^(R)115$ membrane. Enhanced performance of direct dimethyl ether fuel cells using Nafion/PEAS blend membrane was explained by reducing dimethyl ether (DME) crossover through the electrolyte membrane and maintenance of the proton conductivity at high temperature.

Nafion/poly(ether(amino sulfone)) acid-base 블렌드 고분자 전해질 막을 제조하여 이온전도도, 디메틸 에테르(DME) 투과도를 측정하였으며 이를 이용하여 직접 DME 연료전지 특성을 연구하였다. Poly(ether(amino sulfone)) (PEAS)는 아민기의 치환도가 $0.6\sim2.0$인 것을 합성하였다. Nafion/PEAS 블렌드 전해질 막은 Nafion과 PEAS를 DMF에 용해시켜서 캐스팅하는 방법으로 제조하였다. 블렌드 전해질막은 $100^{\circ}C$ 이상에서도 이온전도도가 계속 증가하였다. Nafion/PEAS-0.6(85:15) 블렌드 전해질막은 $50^{\circ}C$ 이상에서의 수소 이온전도도가 recast Nafion보다 더 높게 나타났으며 $120^{\circ}C$에서의 수소 이온전도도는 $1.42\times10^{-1}S/cm$로 측정되었다. PEAS의 아민기가 많이 치환될수록 블렌드 전해질막의 DME 투과도와 이온전도도는 비례적으로 감소하는 것을 확인할 수 있었다. $100^{\circ}C$ 이상 가압 조건에서 Nafion/PEAS 블렌드 전해질막을 사용한 직접 DME 연료전지(DDMEFC)의 최대 전력밀도가 같은 조건에서 Nafion 115를 사용한 것보다 약 50%증가하였다. 이와 같은 DDMEFC의 성능 향상은 블렌드 전해질막이 Nafion과 비교하여 고온에서의 이온전도도가 향상되었고 DME투과도가 감소하였기 때문인것으로 해석된다.

Keywords

References

  1. M. A. Hickner, H Ghassemi, Y. S. Kim, B. R. Einsla, and James E. McGrath, 'Alternative polymer system for proton exchange membranes (PEMs)', Chem. Rev., 104, 4587 (2004) https://doi.org/10.1021/cr020711a
  2. M. M. Mench, H. M. Chance, and C. Y. Wang, 'Direct dimethyl ether polymer electrolyte fuel cells for portable applications', J. Electrochem. Soc., 151, A144 (2004) https://doi.org/10.1149/1.1631819
  3. J. T. Muller, P. M. Urban, W. F. Holedrich, K. M. Colbow, J. Zhang and D. P. Wilkinson, 'Electro-oxidation of dimethyl ether in a polymer-electrolyte-membrane fuel cell', J. Electrochem. Soc., 147, 4058 (2000) https://doi.org/10.1149/1.1394018
  4. R. Wycisk, J. Chisholm, J. Lee, J. Lin, P. N. Pintauro, 'Direct methanol fuel cell membranes from Nafion-polybenzimidazole blends', J. Power Sources, web released (2005)
  5. M. Doyle and G. Rajendran in 'Handbook of Fuel Cells', Eds. by W. Vielstich, A. Lamm and H. A. Gasteiger, John Wiley & Sons, West Sussex, Vol. 3, p352 (2003)
  6. V. Tricoli, 'Proton and methanol transport in poly(perfluorosulfonate) membranes containing $Cs^+$ and $H^+$ cations', J. Electrochem, Soc., 145, 3798 (1998)
  7. A. Kuver, I. Vogel, and W. Vielstich, 'Distinct performance evaluation of a direct methanol SPE fuel cell', J. Power Sources, 52, 77 (1994)
  8. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I.-H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, 'Structural characterization and surface modification of sulfonated polystyrene-(ethylene-butylene)-styrene triblock proton exchange membranes', J. Membr. Sci., 214, 245 (2003) https://doi.org/10.1016/S0376-7388(02)00555-0
  9. L. J. Hobson, H. Ozu, M. Yamaguchi, and S. Hayase, 'Modified Nafion 117 as an improved polymer electrolyte membrane for direct methanol fuel cells', J. Electrochem. Soc., 148, A1185 (2001)
  10. C. Manea and M. Mulder, 'Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfonel sulfoneted polyetheretherketone for direct methanol fuel cell applications', J. Membr. Sci., 206, 443 (2003) https://doi.org/10.1016/S0376-7388(01)00787-6
  11. F. Wang, M. Hickner, Y. S. Kim. T. A. Zawodzinski, and J. E. MaGrath, 'Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers', J. Membr. Sci., 197, 231 (2002) https://doi.org/10.1016/S0376-7388(01)00620-2
  12. L. Li, J. Zhang, and Y. Wang, 'Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell', J. Membr. Sci., 226, 159 (2003)
  13. J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, and K.I Okamoto, 'Novel sulfonated polyimides as polyelectrolytes for fuel cell application'; Macromolecules, 35, 9022 (2002) https://doi.org/10.1021/ma011278u
  14. K. Miyatake, H. Zhou, H. Uchida, and. M. Watanabe, 'Highly proton conductive polyimide electrolytes containing tluorenyl groups', Chem. Commun., 368 (2003)
  15. D. J. Jones and J. Roziere, 'Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications', J. Membr. Sci., 185, 41 (2001) https://doi.org/10.1016/S0376-7388(00)00630-X
  16. B. Smitha, S. Sridhar, and A. A. Khan, 'Synthesis and characterization of proton conducting polymer membranes for fuel cells', J. Membr. Sci., 225, 63 (2003)
  17. Q. Guo, P. N. Pintauro, H. Tang, and S. O'Connor, 'Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes', J. Membr. Sci., 154, 175 (1999) https://doi.org/10.1016/S0376-7388(98)00282-8
  18. K M. Nouel and P. S. Fedkiw, 'Nafion-based composite polymer electrolyte membranes', Electrochim. Acta, 43, 2381 (1998) https://doi.org/10.1016/S0013-4686(97)10151-7
  19. J.-S. Jiang, D. B. Greenberg, and J. R. Fired, 'Preparation of a Nafion composite membrane using a porous Teflon support', J. Membr. Sci., 132, 273 (1997) https://doi.org/10.1016/S0376-7388(97)00067-7
  20. M. Walker, K-M. Baumgartner, M. Kaiser, J. Kerres, A. Ullrich, and E. Rauchle, 'Proton-conducting polymer with reduced methanol permeation', J. Appl. Polym. Sci., 74, 67 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<67::AID-APP7>3.0.CO;2-2
  21. J. Kerres, A. Ullrich, F. Meier, and T. Haring, 'Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells', Solid State Ionics, 125,243 (1999) https://doi.org/10.1016/S0167-2738(99)00181-2
  22. J. A. Kerres, 'Development of ionomer membranes for fuel cells', J. Membr. Sci., 185,3 (2001) https://doi.org/10.1016/S0376-7388(00)00630-X
  23. J. A. Kerres, 'Blended and cross-linked ionomer membranes for application in membrane fuel cells', Fuel cells, 5, 230 (2005) https://doi.org/10.1002/fuce.200400079
  24. L. Jorissen, V. Gogel, J. Kerres, and J. Garche, 'New membranes for direct methanol fuel cells', J. Power Sources, 105, 267 (2002)
  25. M. D. Guiver and G. P. Robertson, 'Chemical modification of polysulfones II', Macromloecules, 28, 294 (1995)
  26. 'Reagent for organic synthesis' by John Wiley & Sons, 1, 1178 (1967)
  27. M. D. Guiver, G. P. Robertson, and S. Foley, 'Chemical modification of polysulfones', Macromolecules, 28, 7612 (1995)
  28. R. B. Moore and C. R. Martin, 'Procedure for preparing solutioncast perfluorosulfonate ionomer films and membranes', Anal. Chem., 58, 2570 (1986) https://doi.org/10.1021/ac00295a073
  29. R. F. Silva, M. D. Francesco, and A. Pozio, 'Solution-cast Nafion ionomer membranes', Electrochim. Acta, 49, 3211 (2004) https://doi.org/10.1016/j.electacta.2004.02.035
  30. K. Miyatake and M. Watanabe, 'Recent progress in proton conducting membranes for PEFCs', Electrochemistry, 73, 12 (2005)
  31. J. Mizutani, Y. Liu, S. Mitsushima, K. -I. Ota, and N. Kamiya, 'Anode reaction mechanism and crossover in direct dimethyl ether fuel cell', J. Power Sources, web released (2005)