• Title/Summary/Keyword: nActivated Carbon

Search Result 368, Processing Time 0.029 seconds

A Study of Radon Reduction using Panel-type Activated Carbon (판재형 활성탄을 이용한 라돈 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Jun, Jae-Hoon;Yang, Seung-Woo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Recently, building materials and air purification filters with eco-friendly charcoal are actively studying to reduce the concentration of radon gas in indoor air. In this study, radon reduction performance was assessed by designing and producing new panel-type activated carbon filter that can be handled more efficiently than conventional charcoal filters, which can reduce radon gas. For the fabrication of our panel-type activated carbon filter, first the pressed molding product after mixing activated carbon powder and polyurethane. Then, through diamond cutting, the activated carbon filter of 2 mm, 4 mm and 6 mm thickness were fabricated. To investigate the physical characteristics of the fabricated activated carbon filter, a surface area and flexural strength measurement was performed. In addition, to evaluate the reduction performance of radon gas in indoor, the radon concentration of before and after the filter passes from a constant amount of air flow using three acrylic chambers was measured, respectively. As a result, the surface area of the fabricated activated carbon was approximately $1,008m^2/g$ showing similar value to conventional products. Also, the flexural load was found to have three times higher value than the gypsum board with 435 N. Finally, the radon reduction efficiency from indoor gas improved as the thickness of the activated carbon increases, resulting in an excellent radon removal rate of more than 90 % in the 6 mm thick filter. From the experimental results, the panel-type activated carbon is considered to be available as an eco-friendly building material to reduce radon gas in an enclosed indoor environment.

The Extraction of Manganese from the Medium-Low Carbon Ferromanganese dust with Nitric acid and Charcoal (페로망간제조 분진에서 질산과 활성탄에 의한 망간의 침출)

  • 이계승;김형석;송영준;신강호;김윤채;조동성
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.44-49
    • /
    • 2000
  • Among dusts which were generated in AOD process producing a medium-low carbon ferromanganese, the dust collected in bag filter contained manganese about 63% and its phase was $Mn_3$$O_4$. the maximum extraction of Mn by nitric acid is about 67% because of remaining amorphous $MnO_2$. Therefore this research investigated reducibility of the activated charcoal in Mn extraction from the dust. Addition of charcoal over 10% of pulp density made possible Mn extraction of 90% at $70^{\circ}C$, 0.5N $HNO_3$. To convert $Mn_3$$O_4$ to MnO by reducing roasting, the minimum mixture ratio of activated charcoal was 5% in $750^{\circ}C$, 1 hour. Extraction of Mn from the reduced dust was over 99% with nitric acid at $25^{\circ}C$, 6N $HNO_3$, pulp density 150 g/l§.

  • PDF

Performance Study on Odor Reduction of Indole/Skatole by Composite

  • Young-Do Kim
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.67-72
    • /
    • 2024
  • This study developed a dry composite module-type deodorization facility with Twisting airflow changes and two forms (catalyst, adsorbent) within one module. Experiments were conducted to evaluate the reduction efficiency of odor substances C8H7N and C9H9N. The device combines UV oxidation using TiO2, catalytic oxidation using MnO2, and adsorption using A/C in five different methods. Data analysis of experimental results utilized the statistical package program Python 3.12. The program applied frequency analysis of odor removal efficiency, one-way ANOVA, and post-hoc tests, with statistical significance determined by p-value to ensure reliability and validity of the measurements. Results indicated that the highest removal efficiency of C8H7N and C9H9N was achieved by the UV+A/C method, suggesting the superior effectiveness and efficiency of the developed device. Combining multiple processes and technologies within one module enhanced odor treatment efficiency compared to using a single method. The device's modularity allows for flexibility in adapting to various sewage treatment scenarios, offering easy maintenance and cost-effective deodorization. This composite reaction module device can apply multiple technologies, such as biofilters, plasma, activated carbon filters, UV-photocatalysis, and electromagnetic-chemical systems. However, this study focused on UV-photocatalysis, catalysts, and activated carbon filters. Ultimately, the research demonstrates the practical applicability of this innovative device in real sewage treatment operations, showing excellent reduction efficiency and effectiveness by integrating UV oxidation, TiO2 photocatalysis, MnO2 catalytic oxidation, and A/C adsorption within a modular system.

Equilibrium Removal of Pb (II) Ions from Aqueous Solution onto Oxidized-KOH-Activated Carbons

  • Fathy, Nady A.;El-Sherif, Iman Y.
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • In the present study, the removal of Pb (II) ions on oxidized activated carbons (ACs) was investigated. ACs were derived from activation of indigenous cotton stalks waste with potassium hydroxide (KOH) in two-stage process. The KOH-ACs were subjected to liquid-phase oxidation with hot $HNO_3$ and one untreated sample was included for comparison. The obtained carbons were characterized by Fourier transform infrared (FTIR), slurry pH and $N_2$-adsorption at 77 K, respectively. Adsorption capacity of Pb (II) ions on the resultant carbons was determined by batch equilibrium experiments. The experimental results indicated that the oxidation with nitric acid was associated with a significant increase in mass of yield as well as a remarkable reduction in internal porosity as compared to the untreated carbon. The AC-800N revealed higher adsorption capacity than that of AC-800, although the former sample exhibited low surface area and micropore volume. It was observed that the adsorption capacity enhancement attributed to pore widening, the generation of oxygen functional groups and potassium containing compounds leading to cation-exchange on the carbon surface. These results show that the oxidized carbons represented prospective adsorbents for enhancing the removal of heavy metals from wastewater.

Surface Impregnation of Glycine to Activated Carbon Adsorbents for Dry Capture of Carbon Dioxide

  • Lim, Yun Hui;Adelodun, Adedeji A.;Kim, Dong Woo;Jo, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.99-113
    • /
    • 2016
  • In order to improve the portability of basic absorbents monoethanolamine (MEA) and glycine (Gly), both were supported on microporous activated carbon (AC). Chemical modification by alkali-metal ion exchange (of Li, Na, K) was carried out on Gly-based absorbents. All supported absorbents were subjected to $CO_2$ absorption capacity (pure $CO_2$) and selectivity (indoor level) tests. Textural and chemical characterizations were carried out on test sorbents. All impregnation brought about significant reduction of specific surface area and microporosity of the adsorbent Depreciation in the textural properties was found to result to reduction in pure $CO_2$ sorption. Contrarily, low-level $CO_2$ removal capacity was enhanced as the absorbent dosage increases, resulting in supported 5 molar MEA in methanol solution. Adsorption capacities were improved from 0.016 and 0.8 in raw ACs to 1.065 mmol/g for MEA's. Surface chemistry via X-ray photoelectron spectroscopy (XPS) of the supported sorbents showed the presence of amine, pyrrole and quaternary-N. In reducing sequence of potency, pyridine, amine and pyrrolic-N were noticed to contribute significantly to $CO_2$ selective adsorption. Furthermore, the adsorption isotherm study confirms the presence of various SNGs heterogeneously distributed on AC. The adsorption mechanism of the present AC adsorbents favored Freundlich and Langmuir isotherm at lower and higher $CO_2$ concentrations respectively.

Influence of Amine Surface Treatment on Carbon Dioxide Adsorption Behaviors of Activated Carbon Nanotubes (아민 처리가 탄소나노튜브의 이산화탄소 흡착거동에 미치는 영향)

  • Jang, Dong-Il;Cho, Ki-Sook;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.658-662
    • /
    • 2009
  • In this work, the amine-treated activated carbon nanotubes (A-MWNTs) were used to investigate the $CO_2$ adsorption behaviors. A-MWNTs were prepared by impregnation with amine in methanol after chemical activation methods using a KOH. The characteristics of amine-treated A-MWNTs were studied by X-ray photoelectron spectroscopy (XPS), $N_2$ adsorption, desorption isotherms at 77 K. The specific surface area and pore volume of the A-MWNTs were analyzed by BET equation, BJH method, and t-plot method. $CO_2$ capture capacity as a function of temperature was measured by temperature programmed desorption (TPD). From the results, the amine treatment increased the basicity and nitrogen content of the A-MWNTs. The $CO_2$ adsorption capacity of the amine-nontreated A-MWNTs showed the highest value at room temperature and then greatly decreased with increasing the temperature. However, the amine-treated A-MWNTs presented a softer slope with temperature compared to the amine-nontreated ones. It was due to the strong interactions between $CO_2$ and amino groups presented on the carbon surfaces studied.

Utilization of Cotton Stalks-Biomass Waste in the Production of Carbon Adsorbents by KOH Activation for Removal of Dye-Contaminated Water

  • Fathy, Nady A.;Girgis, Badie S.;Khalil, Lila B.;Farah, Joseph Y.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.224-234
    • /
    • 2010
  • Four activated carbons were produced by two-stage process as followings; semi-carbonization of indigenous biomass waste, i.e. cotton stalks, followed by chemical activation with KOH under various activation temperatures and chemical ratios of KOH to semi-carbonized cotton stalks (CCS). The surface area, total pore volume and average pore diameter were evaluated by $N_2$-adsorption at 77 K. The surface morphology and oxygen functional groups were determined by SEM and FTIR, respectively. Batch equilibrium and kinetic studies were carried out by using a basic dye, methylene blue as a probe molecule to evaluate the adsorption capacity and mechanism over the produced carbons. The obtained activated carbon (CCS-1K800) exhibited highly microporous structure with high surface area of 950 $m^2/g$, total pore volume of 0.423 $cm^3/g$ and average pore diameter of 17.8 ${\AA}$. The isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 222 mg/g for CCS-1K800. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The pseudo-second-order model fitted better for kinetic removal of MB dye. The results indicate that such laboratory carbons could be employed as low cost alternative to commercial carbons in wastewater treatment.

Impregnation of Nitrogen Functionalities on Activated Carbon Fiber Adsorbents for Low-level CO2 Capture (저농도 이산화탄소 포집용 활성탄소섬유 흡착제의 질소작용기 함침연구)

  • Hwang, Su-Hyun;Kim, Dong-Woo;Jung, Dong-Won;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.176-183
    • /
    • 2016
  • Activated carbon fibers (ACFs) for $CO_2$ adsorption were prepared from polyacrylonitrile (PAN) fiber through the systematic processes such as oxidation, activation and amination with the focus on the formation of nitration functional groups. Textural analysis of test samples revealed the decrease of specific surface area and pore volume by chemical activation including amination. The ratio of micropores to the total volume was 0.85 to 0.91, which was high enough with the pore size of 1.57 to 1.77 nm. Nitrogen compounds such as imine, pyridine and pyrrole presenting favorable interforces to $CO_2$ molecules were formed throughout the whole preparation steps. The aminated ACF adsorbent showed the enhanced adsorption capacity, 0.40 mmol/g for low-level $CO_2$ flow (3000 ppm) at room temperature. Selectivity of $CO_2$ against dry air ($O_2$ & $N_2$) also increased from 1.00 to 4.66 by amination.

The Characteristics of Oxidation and Adsorption Processes for 2-Methylisoborneol(2-MIB) Removing (2-Methylisoborneol(2-MIB)제거를 위한 산화 및 흡착공정의 특성)

  • 최근주;김상구;류동춘;신판세;손인식;오광중
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.241-246
    • /
    • 2002
  • One of the Musty and earthy smell compounds in raw water is generally attributed to 2-methylisoborneol (2-MIB). It is well known that activated carbon and oxidants such as $O_3$, Cl $O_2$, are effective ways to control 2-MIB. In isotherm equilibrium experiments, 2-MIB in distilled water was much more adsorbed to the activated carbon(A/C) than raw water containing dissolved organic carbon (DOC). The Freundlich constants(k) of distilled water and raw water were 3.36 and 0.049, and 1/n values were 0.80 and 0.42, respectively. The 2-MIB residual rate were Y = $e^{-0}$.55x/~ $e^{-0}$.54x/ with Ozone( $O_3$) dose by 5 minutes contact time at the 241 and 353 ng/L initial concentrations. The 2-MIB residual rate were Y = $e^{-0}$.32x/~ $e^{-0}$.35x/ with Chlorine dioxide(Cl $O_2$) dose by 15 minutes contact time at the 89 and 249 ng/L initial concentrations. 2-MIB was decreased from 1911 ng/L to 569ng/L by post-ozonation(70%removal efficiency) and removal efficiencies of 2-MIB by the following 4 kinds Granular Activated Carbon(GAC) process such as coal base, coconut base, wood base and zeolite+carbon base were 95.8, 89.5, 88.4, and 93.7% respectively.ely.

Comparative studies of porous carbon nanofibers by various activation methods

  • Lee, Hye-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, activated carbons nanofibers (ACNFs) were prepared from polyacrylonitrile-based nanofibers by physical ($H_2O$ and $CO_2$) and chemical (KOH) activation. The surface and structural characteristics of the porous carbon were observed by scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated by $N_2$/77K adsorption isotherms. The specific surface area of the physically ACNFs was increased up to $2400m^2/g$ and the ACNFs were found to be mainly composed of micropore structures. Chemical activation using KOH produced ACNFs with high specific surface area (up to $2500m^2/g$), and the micropores were mainly found in the ACNFs. The physically and chemically ACNFs showed both mainly type I from the International Union of Pure and Applied Chemistry classification.