Influence of Amine Surface Treatment on Carbon Dioxide Adsorption Behaviors of Activated Carbon Nanotubes

아민 처리가 탄소나노튜브의 이산화탄소 흡착거동에 미치는 영향

  • Received : 2009.08.25
  • Accepted : 2009.09.15
  • Published : 2009.12.10

Abstract

In this work, the amine-treated activated carbon nanotubes (A-MWNTs) were used to investigate the $CO_2$ adsorption behaviors. A-MWNTs were prepared by impregnation with amine in methanol after chemical activation methods using a KOH. The characteristics of amine-treated A-MWNTs were studied by X-ray photoelectron spectroscopy (XPS), $N_2$ adsorption, desorption isotherms at 77 K. The specific surface area and pore volume of the A-MWNTs were analyzed by BET equation, BJH method, and t-plot method. $CO_2$ capture capacity as a function of temperature was measured by temperature programmed desorption (TPD). From the results, the amine treatment increased the basicity and nitrogen content of the A-MWNTs. The $CO_2$ adsorption capacity of the amine-nontreated A-MWNTs showed the highest value at room temperature and then greatly decreased with increasing the temperature. However, the amine-treated A-MWNTs presented a softer slope with temperature compared to the amine-nontreated ones. It was due to the strong interactions between $CO_2$ and amino groups presented on the carbon surfaces studied.

본 연구에서는 탄소나노튜브를 KOH를 이용하여 활성화 한 후 이를 아민으로 표면처리한 탄소나노튜브의 이산화탄소 흡착거동에 관하여 고찰하였다. 아민 처리한 탄소나노튜브의 물리화학적 특성은 X-ray photoelectron spectroscopy (XPS), $N_2$ adsorption isotherm, thermogravimetric analysis (TGA), 그리고 temperature programmed desorption (TPD)을 이용하여 분석하였다. 실험 결과, 활성화된 탄소나노튜브 표면의 아미노 관능기는 산성가스인 이산화탄소를 선택적으로 흡착하기 위한 염기성 자리로서 작용하였다. 상온에서의 이산화탄소 흡착량은 미처리된 탄소나노튜브가 가장 크게 나타났으나 온도가 증가할수록 급격한 감소를 나타내었으며 PEHA 처리한 경우 완만한 흡착거동을 보였다. 이는 탄소표면의 아미노 관능기와 이산화탄소 사이의 상호작용 때문이라 판단된다.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of intergovernmental panel on climate change. Cambridge, United Kingdom and New York:Cambridge University Press (2001)
  2. X. Xu, C. S. Song, J. M.Andresen, B. G. Miller, and A. W. Scaroni, Micropor. Mesopor. Mater., 62, 29 (2003) https://doi.org/10.1016/S1387-1811(03)00388-3
  3. Y. J. Yoo, H. S. Kim, J. H. Park, S. S. Han, and S. H. Cho, J. Korean Ind. Eng. Chem., 18, 273 (2007)
  4. P. Li, S. Zhang, S. Chen, Q. Xhang, J. Pan, and B. Ge, J. Appl. Polym. Sci., 108, 3851 (2008) https://doi.org/10.1002/app.27937
  5. R. W. Hughes, D. Y. Lu, E. J. Anthony, and A. Macchi, Fuel Processing Tech., 86, 1523 (2005) https://doi.org/10.1016/j.fuproc.2005.01.006
  6. K. M. Lee and Y. M. Jo, J. Korean Ind. Eng. Chem., 19, 533 (2008)
  7. J. K. Jeon, Y. K. Park, and K. Chue, J. KOSAE, 20, 99 (2004)
  8. N. D. Hutson, Chem. Mater., 16, 4135 (2004) https://doi.org/10.1021/cm040060u
  9. IPCC Special Report on carbon dioxide capture and storage intergovernmental panel on climate change. Cambridge university Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore and Sao Paulo (2005)
  10. K. Damen, M. van Troost, A. Faaij, and W. Turkenburg, Prog. Energy Combust. Sci., 32, 215 (2006) https://doi.org/10.1016/j.pecs.2005.11.005
  11. X. Xu, C. Song, J. M. Andresen, B. Miller, and A. Scaroni, Micropor. Mesopor. Mater., 62, 29 (2003) https://doi.org/10.1016/S1387-1811(03)00388-3
  12. A. Arenillas, F. Rubiera, F. B. Parra, C. O. Ania, and J. J. Pis, Appl. Surf. Sci., 252, 619 (2005) https://doi.org/10.1016/j.apsusc.2005.02.076
  13. T. C. Drage, A. Arenillas, K. M. Smith, C. Pevida, S. Piippo, and C. E. Snape, Fuel, 86, 22 (2007) https://doi.org/10.1016/j.fuel.2006.07.003
  14. M. M. Maroto-Valer, Z. Tang, and Y. Zhang, Fuel Process Technol., 86, 1487 (2005) https://doi.org/10.1016/j.fuproc.2005.01.003
  15. J. Przepiorski, M. Skrodzewicz, and A. W. Morawski, Appl. Surf. Sci., 225, 235 (2004) https://doi.org/10.1016/j.apsusc.2003.10.006
  16. K. A. Mohamed, M. A. W. D. Wan, C. Y. Yin, and D. Adinata, Sep. Purif. Technol., 62, 611 (2008)
  17. S. J. Park, K. D. Kim, and J. R. Lee, J. Korean Ind. Eng. Chem., 9, 920 (1998)
  18. S. J. Park and K. D. Kim, J. Colloid Interface Sci., 212, 186 (1999) https://doi.org/10.1006/jcis.1998.6058
  19. G. P. Knowles, S. W. Delaney, and A. L. Chaffee, Ind. Eng. Chem. Res., 45, 2626 (2006) https://doi.org/10.1021/ie050589g
  20. M. L. Gray, Y. Soong, K. J. Champagne, H. Pennline, J. P. Baltrus, R. W. Stevens Jr., R. Khatri, S. S. C. Chuang, and T. Filburn, Fuel Process Technol., 86, 1449 (2005) https://doi.org/10.1016/j.fuproc.2005.01.005
  21. X. Xu, C. S. Song, B. G. Miller, and A. W. Scaroni, Fuel Process Technol. 86, 1457 (2005) https://doi.org/10.1016/j.fuproc.2005.01.002
  22. N. Hiyoshi, K. Yogo, and T. Yashima, Chem. Lett., 33, 510 (2004) https://doi.org/10.1246/cl.2004.510
  23. M. G. Plaza, C. Pevide, A. Arenillas, and F. Rubiera, J. J. Pis, Fuel, 86, 2204 (2007) https://doi.org/10.1016/j.fuel.2007.06.001
  24. W. J. Son, J. S. Choi, and W. S. Ahn, Micropor. Mesopor. Mater., 113, 31 (2008) https://doi.org/10.1016/j.micromeso.2007.10.049
  25. S. J. Park, S. Y. Jin, and J. Kawasaki, J. Korean Ind. Eng. Chem., 14, 1111 (2003)
  26. Q. Jiang, M. Z. Qu, B. L. Zhang, and Z. L. Yu, Carbon, 40, 2743 (2002) https://doi.org/10.1016/S0008-6223(02)00208-7
  27. B. J. Kim, Y. S. Lee, and S. J. Park, J. Colloid Interface Sci., 306, 454 (2007) https://doi.org/10.1016/j.jcis.2006.10.038
  28. S. J. Park and K. D. Kim, Carbon, 39, 1741 (2001) https://doi.org/10.1016/S0008-6223(00)00305-5
  29. S. brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309 (1938) https://doi.org/10.1021/ja01269a023
  30. K. M. Lee and Y. M. Jo, J. Korean Ind. Eng. Chem., 19, 533 (2008)