• Title/Summary/Keyword: n-coherent ring

Search Result 10, Processing Time 0.023 seconds

ON ϕ-(n, d) RINGS AND ϕ-n-COHERENT RINGS

  • Younes El Haddaoui;Hwankoo Kim;Najib Mahdou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.623-642
    • /
    • 2024
  • This paper introduces and studies a generalization of (n, d)-rings introduced and studied by Costa in 1994 to rings with prime nilradical. Among other things, we establish that the ϕ-von Neumann regular rings are exactly either ϕ-(0, 0) or ϕ-(1, 0) rings and that the ϕ-Prüfer rings which are strongly ϕ-rings are the ϕ-(1, 1) rings. We then introduce a new class of rings generalizing the class of n-coherent rings to characterize the nonnil-coherent rings introduced and studied by Bacem and Benhissi.

Nil-COHERENT RINGS

  • Xiang, Yueming;Ouyang, Lunqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.579-594
    • /
    • 2014
  • Let R be a ring and $Nil_*$(R) be the prime radical of R. In this paper, we say that a ring R is left $Nil_*$-coherent if $Nil_*$(R) is coherent as a left R-module. The concept is introduced as the generalization of left J-coherent rings and semiprime rings. Some properties of $Nil_*$-coherent rings are also studied in terms of N-injective modules and N-flat modules.

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

ON ALMOST QUASI-COHERENT RINGS AND ALMOST VON NEUMANN RINGS

  • El Alaoui, Haitham;El Maalmi, Mourad;Mouanis, Hakima
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1177-1190
    • /
    • 2022
  • Let R be a commutative ring with identity. We call the ring R to be an almost quasi-coherent ring if for any finite set of elements α1, …, αp and a of R, there exists a positive integer m such that the ideals $\bigcap{_{i=1}^{p}}\;R{\alpha}^m_i$ and AnnRm) are finitely generated, and to be almost von Neumann regular rings if for any two elements a and b in R, there exists a positive integer n such that the ideal (αn, bn) is generated by an idempotent element. This paper establishes necessary and sufficient conditions for the Nagata's idealization and the amalgamated algebra to inherit these notions. Our results allow us to construct original examples of rings satisfying the above-mentioned properties.

A COTORSION PAIR INDUCED BY THE CLASS OF GORENSTEIN (m, n)-FLAT MODULES

  • Qiang Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In this paper, we introduce the notion of Gorenstein (m, n)-flat modules as an extension of (m, n)-flat left R-modules over a ring R, where m and n are two fixed positive integers. We demonstrate that the class of all Gorenstein (m, n)-flat modules forms a Kaplansky class and establish that (𝓖𝓕m,n(R),𝓖𝓒m,n(R)) constitutes a hereditary perfect cotorsion pair (where 𝓖𝓕m,n(R) denotes the class of Gorenstein (m, n)-flat modules and 𝓖𝓒m,n(R) refers to the class of Gorenstein (m, n)-cotorsion modules) over slightly (m, n)-coherent rings.

GORENSTEIN FPn-INJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING BIMODULE

  • Zhiqiang Cheng;Guoqiang Zhao
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.29-40
    • /
    • 2024
  • Let S and R be rings and SCR a semidualizing bimodule. We introduce the notion of GC-FPn-injective modules, which generalizes GC-FP-injective modules and GC-weak injective modules. The homological properties and the stability of GC-FPn-injective modules are investigated. When S is a left n-coherent ring, several nice properties and new Foxby equivalences relative to GC-FPn-injective modules are given.

PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS

  • Xiang, Yueming
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.497-510
    • /
    • 2010
  • Let R be a ring and n a fixed non-negative integer. $\cal{TI}_n$ (resp. $\cal{TF}_n$) denotes the class of all right R-modules of FGT-injective dimensions at most n (resp. all left R-modules of FGT-flat dimensions at most n). We prove that, if R is a right $\prod$-coherent ring, then every right R-module has a $\cal{TI}_n$-cover and every left R-module has a $\cal{TF}_n$-preenvelope. A right R-module M is called n-TI-injective in case $Ext^1$(N,M) = 0 for any $N\;{\in}\;\cal{TI}_n$. A left R-module F is said to be n-TI-flat if $Tor_1$(N, F) = 0 for any $N\;{\in}\;\cal{TI}_n$. Some properties of n-TI-injective and n-TI-flat modules and their relations with $\cal{TI}_n$-(pre)covers and $\cal{TF}_n$-preenvelopes are also studied.

HOMOLOGICAL PROPERTIES OF MODULES OVER DING-CHEN RINGS

  • Yang, Gang
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.31-47
    • /
    • 2012
  • The so-called Ding-Chen ring is an n-FC ring which is both left and right coherent, and has both left and right self FP-injective dimensions at most n for some non-negative integer n. In this paper, we investigate the classes of the so-called Ding projective, Ding injective and Gorenstein at modules and show that some homological properties of modules over Gorenstein rings can be generalized to the modules over Ding-Chen rings. We first consider Gorenstein at and Ding injective dimensions of modules together with Ding injective precovers. We then discuss balance of functors Hom and tensor.

RESOLUTIONS AND DIMENSIONS OF RELATIVE INJECTIVE MODULES AND RELATIVE FLAT MODULES

  • Zeng, Yuedi;Chen, Jianlong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.11-24
    • /
    • 2013
  • Let m and n be fixed positive integers and M a right R-module. Recall that M is said to be ($m$, $n$)-injective if $Ext^1$(P, M) = 0 for any ($m$, $n$)-presented right R-module P; M is said to be ($m$, $n$)-flat if $Tor_1$(N, P) = 0 for any ($m$, $n$)-presented left R-module P. In terms of some derived functors, relative injective or relative flat resolutions and dimensions are investigated. As applications, some new characterizations of von Neumann regular rings and p.p. rings are given.

AMALGAMATED MODULES ALONG AN IDEAL

  • El Khalfaoui, Rachida;Mahdou, Najib;Sahandi, Parviz;Shirmohammadi, Nematollah
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Let R and S be two commutative rings, J be an ideal of S and f : R → S be a ring homomorphism. The amalgamation of R and S along J with respect to f, denoted by R ⋈f J, is the special subring of R × S defined by R ⋈f J = {(a, f(a) + j) | a ∈ R, j ∈ J}. In this paper, we study some basic properties of a special kind of R ⋈f J-modules, called the amalgamation of M and N along J with respect to ��, and defined by M ⋈�� JN := {(m, ��(m) + n) | m ∈ M and n ∈ JN}, where �� : M → N is an R-module homomorphism. The new results generalize some known results on the amalgamation of rings and the duplication of a module along an ideal.