Acknowledgement
The authors would like to express their sincere thanks to the referee for his/her helpful suggestions and comments.
References
- D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq. 19 (2012), Special Issue no. 1, 1017-1040. https://doi.org/10.1142/S1005386712000831
- D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
- M. Auslander, On regular group rings, Proc. Amer. Math. Soc. 8 (1957), 658-664. https://doi.org/10.2307/2033274
- V. Barucci, D. F. Anderson, and D. E. Dobbs, Coherent Mori domains and the principal ideal theorem, Comm. Algebra 15 (1987), no. 6, 1119-1156. https://doi.org/10.1080/00927878708823460
- M. B. Boisen, Jr., and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canadian J. Math. 29 (1977), no. 4, 722-737. https://doi.org/10.4153/CJM-1977-076-6
- V. P. Camillo, Semihereditary polynomial rings, Proc. Amer. Math. Soc. 45 (1974), 173-174. https://doi.org/10.2307/2040056
- S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. https://doi.org/10.2307/1993382
- M. Chhiti, N. Mahdou, and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat. 44 (2015), no. 1, 41-49.
- M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519. https://doi.org/10.1016/j.jalgebra.2005.12.023
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
- M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10.1007/s11512-006-0038-1
- M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326
- D. E. Dobbs, On going down for simple overrings, Proc. Amer. Math. Soc. 39 (1973), 515-519. https://doi.org/10.2307/2039585
- R. Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972.
- S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, SpringerVerlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
- S. Glaz, Finite conductor rings, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2833-2843. https://doi.org/10.1090/S0002-9939-00-05882-2
- M. Harada, Note on the dimension of modules and algebras, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956), 17-27.
- J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- K. A. Ismaili and N. Mahdou, Finite conductor property in amalgamated algebra along an ideal, J. Taibah Univ. Sci. 9 (2015), 332-339. https://doi.org/10.1016/j.jtusci.2015.02.006
- S.-E. Kabbaj, Matlis semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroccan Journal of Algebra and Geometry with Applications, In press.
- S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937-3953. https://doi.org/10.1081/AGB200027791
- I. Kaplansky, Commutative rings, revised edition, The University of Chicago Press, Chicago, IL, 1974.
- N. Mahdou, On 2-von Neumann regular rings, Comm. Algebra 33 (2005), no. 10, 3489-3496. https://doi.org/10.1080/00927870500242991
- P. J. McCarthy, The ring of polynomial over a von Neumann regular ring, Proc. Amer. Math. Soc. 39 (1973), 253-254. https://doi.org/10.2307/2039626
- M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York, 1962.
- R. S. Pierce, Modules over commutative regular rings, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, RI, 1967.
- A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1958/59), 372-380. https://doi.org/10.1007/BF01558598
- J. von Neumann, On regular rings, Proc. Nat Acad. Sci. U.S.A. 22 (1936), 707-713. https://doi.org/10.1073/pnas.22.12.707
- M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), no. 1-3, 29-62. https://doi.org/10.1007/BF01168346