DOI QR코드

DOI QR Code

ON ALMOST QUASI-COHERENT RINGS AND ALMOST VON NEUMANN RINGS

  • El Alaoui, Haitham (Faculty of Sciences Dhar El Mahraz Sidi Mohamed Ben Abdellah University) ;
  • El Maalmi, Mourad (Faculty of Sciences Dhar El Mahraz Sidi Mohamed Ben Abdellah University) ;
  • Mouanis, Hakima (Faculty of Sciences Dhar El Mahraz Sidi Mohamed Ben Abdellah University)
  • Received : 2021.09.12
  • Accepted : 2021.11.12
  • Published : 2022.09.30

Abstract

Let R be a commutative ring with identity. We call the ring R to be an almost quasi-coherent ring if for any finite set of elements α1, …, αp and a of R, there exists a positive integer m such that the ideals $\bigcap{_{i=1}^{p}}\;R{\alpha}^m_i$ and AnnRm) are finitely generated, and to be almost von Neumann regular rings if for any two elements a and b in R, there exists a positive integer n such that the ideal (αn, bn) is generated by an idempotent element. This paper establishes necessary and sufficient conditions for the Nagata's idealization and the amalgamated algebra to inherit these notions. Our results allow us to construct original examples of rings satisfying the above-mentioned properties.

Keywords

Acknowledgement

The authors would like to express their sincere thanks to the referee for his/her helpful suggestions and comments.

References

  1. D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq. 19 (2012), Special Issue no. 1, 1017-1040. https://doi.org/10.1142/S1005386712000831
  2. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  3. M. Auslander, On regular group rings, Proc. Amer. Math. Soc. 8 (1957), 658-664. https://doi.org/10.2307/2033274
  4. V. Barucci, D. F. Anderson, and D. E. Dobbs, Coherent Mori domains and the principal ideal theorem, Comm. Algebra 15 (1987), no. 6, 1119-1156. https://doi.org/10.1080/00927878708823460
  5. M. B. Boisen, Jr., and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canadian J. Math. 29 (1977), no. 4, 722-737. https://doi.org/10.4153/CJM-1977-076-6
  6. V. P. Camillo, Semihereditary polynomial rings, Proc. Amer. Math. Soc. 45 (1974), 173-174. https://doi.org/10.2307/2040056
  7. S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. https://doi.org/10.2307/1993382
  8. M. Chhiti, N. Mahdou, and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat. 44 (2015), no. 1, 41-49.
  9. M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519. https://doi.org/10.1016/j.jalgebra.2005.12.023
  10. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
  11. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
  12. M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10.1007/s11512-006-0038-1
  13. M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326
  14. D. E. Dobbs, On going down for simple overrings, Proc. Amer. Math. Soc. 39 (1973), 515-519. https://doi.org/10.2307/2039585
  15. R. Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972.
  16. S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, SpringerVerlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
  17. S. Glaz, Finite conductor rings, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2833-2843. https://doi.org/10.1090/S0002-9939-00-05882-2
  18. M. Harada, Note on the dimension of modules and algebras, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956), 17-27.
  19. J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  20. K. A. Ismaili and N. Mahdou, Finite conductor property in amalgamated algebra along an ideal, J. Taibah Univ. Sci. 9 (2015), 332-339. https://doi.org/10.1016/j.jtusci.2015.02.006
  21. S.-E. Kabbaj, Matlis semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroccan Journal of Algebra and Geometry with Applications, In press.
  22. S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937-3953. https://doi.org/10.1081/AGB200027791
  23. I. Kaplansky, Commutative rings, revised edition, The University of Chicago Press, Chicago, IL, 1974.
  24. N. Mahdou, On 2-von Neumann regular rings, Comm. Algebra 33 (2005), no. 10, 3489-3496. https://doi.org/10.1080/00927870500242991
  25. P. J. McCarthy, The ring of polynomial over a von Neumann regular ring, Proc. Amer. Math. Soc. 39 (1973), 253-254. https://doi.org/10.2307/2039626
  26. M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York, 1962.
  27. R. S. Pierce, Modules over commutative regular rings, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, RI, 1967.
  28. A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1958/59), 372-380. https://doi.org/10.1007/BF01558598
  29. J. von Neumann, On regular rings, Proc. Nat Acad. Sci. U.S.A. 22 (1936), 707-713. https://doi.org/10.1073/pnas.22.12.707
  30. M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), no. 1-3, 29-62. https://doi.org/10.1007/BF01168346