• Title/Summary/Keyword: music pattern

Search Result 143, Processing Time 0.027 seconds

Automatic Music Summarization Using Vector Quantization and Segment Similarity

  • Kim, Sang-Ho;Kim, Sung-Tak;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2E
    • /
    • pp.51-56
    • /
    • 2008
  • In this paper, we propose an effective method for music summarization which automatically extracts a representative part of the music by using signal processing technology. Proposed method uses a vector quantization technique to extract several segments which can be regarded as the most important contents in the music. In general, there is a repetitive pattern in music, and human usually recognizes the most important or catchy tune from the repetitive pattern. Thus the repetition which is extracted using segment similarity is considered to express a music summary. The segments extracted are again combined to generate a complete music summary. Experiments show the proposed method captures the main theme of the music more effectively than conventional methods. The experimental results also show that the proposed method could be used for real-time application since the processing time in generating music summary is much faster than other methods.

Derivation of Digital Music's Ranking Change Through Time Series Clustering (시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류)

  • Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-191
    • /
    • 2020
  • This study focused on digital music, which is the most valuable cultural asset in the modern society and occupies a particularly important position in the flow of the Korean Wave. Digital music was collected based on the "Gaon Chart," a well-established music chart in Korea. Through this, the changes in the ranking of the music that entered the chart for 73 weeks were collected. Afterwards, patterns with similar characteristics were derived through time series cluster analysis. Then, a descriptive analysis was performed on the notable features of each pattern. The research process suggested by this study is as follows. First, in the data collection process, time series data was collected to check the ranking change of digital music. Subsequently, in the data processing stage, the collected data was matched with the rankings over time, and the music title and artist name were processed. Each analysis is then sequentially performed in two stages consisting of exploratory analysis and explanatory analysis. First, the data collection period was limited to the period before 'the music bulk buying phenomenon', a reliability issue related to music ranking in Korea. Specifically, it is 73 weeks starting from December 31, 2017 to January 06, 2018 as the first week, and from May 19, 2019 to May 25, 2019. And the analysis targets were limited to digital music released in Korea. In particular, digital music was collected based on the "Gaon Chart", a well-known music chart in Korea. Unlike private music charts that are being serviced in Korea, Gaon Charts are charts approved by government agencies and have basic reliability. Therefore, it can be considered that it has more public confidence than the ranking information provided by other services. The contents of the collected data are as follows. Data on the period and ranking, the name of the music, the name of the artist, the name of the album, the Gaon index, the production company, and the distribution company were collected for the music that entered the top 100 on the music chart within the collection period. Through data collection, 7,300 music, which were included in the top 100 on the music chart, were identified for a total of 73 weeks. On the other hand, in the case of digital music, since the cases included in the music chart for more than two weeks are frequent, the duplication of music is removed through the pre-processing process. For duplicate music, the number and location of the duplicated music were checked through the duplicate check function, and then deleted to form data for analysis. Through this, a list of 742 unique music for analysis among the 7,300-music data in advance was secured. A total of 742 songs were secured through previous data collection and pre-processing. In addition, a total of 16 patterns were derived through time series cluster analysis on the ranking change. Based on the patterns derived after that, two representative patterns were identified: 'Steady Seller' and 'One-Hit Wonder'. Furthermore, the two patterns were subdivided into five patterns in consideration of the survival period of the music and the music ranking. The important characteristics of each pattern are as follows. First, the artist's superstar effect and bandwagon effect were strong in the one-hit wonder-type pattern. Therefore, when consumers choose a digital music, they are strongly influenced by the superstar effect and the bandwagon effect. Second, through the Steady Seller pattern, we confirmed the music that have been chosen by consumers for a very long time. In addition, we checked the patterns of the most selected music through consumer needs. Contrary to popular belief, the steady seller: mid-term pattern, not the one-hit wonder pattern, received the most choices from consumers. Particularly noteworthy is that the 'Climbing the Chart' phenomenon, which is contrary to the existing pattern, was confirmed through the steady-seller pattern. This study focuses on the change in the ranking of music over time, a field that has been relatively alienated centering on digital music. In addition, a new approach to music research was attempted by subdividing the pattern of ranking change rather than predicting the success and ranking of music.

Automatic Music Recommendation System based on Music Characteristics

  • Kim, Sang-Ho;Kim, Sung-Tak;Kwon, Suk-Bong;Ji, Mi-Kyong;Kim, Hoi-Rin;Yoon, Jeong-Hyun;Lee, Han-Kyu
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.268-273
    • /
    • 2007
  • In this paper, we present effective methods for automatic music recommendation system which automatically recommend music by signal processing technology. Conventional music recommendation system use users’ music downloading pattern, but the method does not consider acoustic characteristics of music. Sometimes, similarities between music are used to find similar music for recommendation in some method. However, the feature used for calculating similarities is not highly related to music characteristics at the system. Thus, our proposed method use high-level music characteristics such as rhythm pattern, timbre characteristics, and the lyrics. In addition, our proposed method store features of music, which individuals queried, to recommend music based on individual taste. Experiments show the proposed method find similar music more effectively than a conventional method. The experimental results also show that the proposed method could be used for real-time application since the processing time for calculating similarities between music, and recommending music are fast enough to be applicable for commercial purpose.

  • PDF

Creating the Idea of Textile Print Pattern Design Using the Visual Expression of Popular Music (대중음악의 시각화를 통한 텍스타일 프린트 패턴디자인 발상)

  • Kim, Ji Yeon;Oh, Kyung Wha;Jung, Hye Jung
    • Fashion & Textile Research Journal
    • /
    • v.17 no.4
    • /
    • pp.524-540
    • /
    • 2015
  • This study develops textile pattern design ideas created through the visualization of music. Methods of auditory and synesthesia were employed to analyze various attributes of popular music genres and appoint language image, shape image, and color image to obtain their interrelationships. This study provides data that can be used to express emotional images on textile print pattern designs. This research used different genres of popular music as stimuli. The language image was extracted and introduced to the overall color scheme; in addition, the color image was verified. The analysis of the color image was executed by applying it with the color set image scale of I.R.I colors. Then, the color image of the target genre of popular music was examined and analyzed through a color tone system. The preference in shape image was realized through visual images based on basic principles of points, lines, and sides composition; subsequently, an analysis of the emotional image of popular music followed. An examination of the emotional images of different popular music genres have led to the discovery that language image, color image, and shape image all share a common emotional image. There was also a realization that similarity and interrelationship exists in language, color, and shape images experienced by listening to popular music.

Performance Analysis of the Time-series Pattern Index File for Content-based Music Genre Retrieval (내용기반 음악장르 검색에서 시계열 패턴 인덱스 화일의 성능 분석)

  • Kim, Young-In;Kim, Seon-Jong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.18-27
    • /
    • 2006
  • Rapid increase of the amount of music data demands for a new method that allows efficient similarity retrieval of music genre using audio features in music databases. To build this similarity retrieval, an indexing techniques that support audio features as a time-series pattern and data mining technologies are needed. In this paper, we address the development of a system that retrieves similar genre music based on the indexing techniques. We first propose the structure of content-based music genre retrieval system based on the time-series pattern index file and data mining technologies. In addition, we implement the time-series pattern index file using audio features and present performance analysis of the time-series pattern index file for similar genre retrieval. The experiments are performed on real data to verify the performance of the proposed method.

  • PDF

The Study on the Trend of Pop-Music Consumers' Behavior (대중음악 소비자들의 이용패턴 변화에 대한 연구)

  • Oh, Han-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4100-4104
    • /
    • 2014
  • The transition of the media of the Pop Music industry can be revealed by the transition of the usage pattern of Pop music consumers and the effects of mass media like TV on music consumers' preferences. This study analyzed the usage pattern and tendency, which evolves from ownership to consumption comparing the AIDMA with the AISAS model.

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.

Speech/Music Discrimination Using Spectrum Analysis and Neural Network (스펙트럼 분석과 신경망을 이용한 음성/음악 분류)

  • Keum, Ji-Soo;Lim, Sung-Kil;Lee, Hyon-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.207-213
    • /
    • 2007
  • In this research, we propose an efficient Speech/Music discrimination method that uses spectrum analysis and neural network. The proposed method extracts the duration feature parameter(MSDF) from a spectral peak track by analyzing the spectrum, and it was used as a feature for Speech/Music discriminator combined with the MFSC. The neural network was used as a Speech/Music discriminator, and we have reformed various experiments to evaluate the proposed method according to the training pattern selection, size and neural network architecture. From the results of Speech/Music discrimination, we found performance improvement and stability according to the training pattern selection and model composition in comparison to previous method. The MSDF and MFSC are used as a feature parameter which is over 50 seconds of training pattern, a discrimination rate of 94.97% for speech and 92.38% for music. Finally, we have achieved performance improvement 1.25% for speech and 1.69% for music compares to the use of MFSC.

Design of Music Learning Assistant Based on Audio Music and Music Score Recognition

  • Mulyadi, Ahmad Wisnu;Machbub, Carmadi;Prihatmanto, Ary S.;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.826-836
    • /
    • 2016
  • Mastering a musical instrument for an unskilled beginning learner is not an easy task. It requires playing every note correctly and maintaining the tempo accurately. Any music comes in two forms, a music score and it rendition into an audio music. The proposed method of assisting beginning music players in both aspects employs two popular pattern recognition methods for audio-visual analysis; they are support vector machine (SVM) for music score recognition and hidden Markov model (HMM) for audio music performance tracking. With proper synchronization of the two results, the proposed music learning assistant system can give useful feedback to self-training beginners.

Music Pattern Analysis of K-POP (K-POP의 음악 패턴 분석)

  • Kang, HyunGoo;Kouh, HoonJoon
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.95-100
    • /
    • 2013
  • K-POP is getting population at the all over the world. K-POP is based on the hook song that made using repetitive lyrics and melody. The characteristics of the music is a bit simple and cheerful rhythm and melody easy to sing along, interesting lyrics and great dance skills. K-POP is spreading to various countries via various social networking services such as YouTube, Facebook, Twitter. K-POP dominated by the digital music market, showed a growing tendency to shorten the length of music, to create a music that can give a strong impression. And 60 second pre-listening function increased music used the chorus in the first part. But it was generated the result that made obscures the configuration of the music and the meaning of the lyrics. In this paper, we study the characteristics of K-POP music and will present three directions of the hook song music production. Finally, we compared to Kangnamstyle of Psy using the proposed three standards.