Performance Analysis of the Time-series Pattern Index File for Content-based Music Genre Retrieval

내용기반 음악장르 검색에서 시계열 패턴 인덱스 화일의 성능 분석

  • 김영인 (부산대학교 바이오시스템공학부) ;
  • 김선종 (부산대학교 바이오시스템공학부)
  • Published : 2006.12.30

Abstract

Rapid increase of the amount of music data demands for a new method that allows efficient similarity retrieval of music genre using audio features in music databases. To build this similarity retrieval, an indexing techniques that support audio features as a time-series pattern and data mining technologies are needed. In this paper, we address the development of a system that retrieves similar genre music based on the indexing techniques. We first propose the structure of content-based music genre retrieval system based on the time-series pattern index file and data mining technologies. In addition, we implement the time-series pattern index file using audio features and present performance analysis of the time-series pattern index file for similar genre retrieval. The experiments are performed on real data to verify the performance of the proposed method.

음악 데이타의 양이 급속히 증가함에 따라 음악 데이타베이스의 오디오 특정을 이용한 내용기 반 음악 장르의 효율적인 유사도 검색 방법이 요구되고 있다. 이러한 시스템을 구현하기 위해서는 시계열 패턴인 오디오 특징을 인덱싱 할 수 있는 인덱싱 기법과 데이터마이닝 기술이 필요하다. 본 논문에서는 인덱싱 기법을 기반으로 하는 유사 장르 음악 검색 시스템의 개발에 대하여 논의한다. 먼저, 시계열 패턴 인덱싱 기법과 데이터마이닝을 이용한 내용기반 음악장르 검색 시스템의 구조를 제안한다. 또한, 오디오 특정을 이용한 유사 장르 검색의 성능을 보이기 위하여 시계열 패턴 인덱스 화일을 구축하고 성능 분석 을 제시한다. 실제 데이타의 특정값을 이용한 실험을 통하여 제안한 기법의 성능을 확인하였다.

Keywords