• 제목/요약/키워드: muscle cells

검색결과 1,343건 처리시간 0.027초

DBcAMP와 retinoic acid를 이용한 마우스 배아줄기의 평활근세포 분화 (Differentiation of mouse embryonic stem cell into smooth muscle cells by DBcAMP and retinoic acid)

  • 박성수;강주원
    • 한국동물위생학회지
    • /
    • 제31권4호
    • /
    • pp.449-456
    • /
    • 2008
  • The differentiation of mouse embryonic stem(ES) cell into smooth muscle cells(SMC) may play a major role in cardiovascular development and under pathophysiological conditions. Therefore, in the present study, we have examined the differentiation of ES cells and its related gene expression. SMC differentiation was indicated by cellular morphology and time-dependent induction of dibutyryl adenosine 3,5-cyclic monophosphate(DBcAMP)and retinoic acid(RA) on smooth muscle ${\alpha}$-actin($SM{\alpha}A$), smooth muscle myosin heavy chain(SMMHC) gene expression. The control was undifferentiated ES cells(protein expressions represent 50-60kDaOct-4). The results of this study show that morphology of embryoid body and confirmation of $SM{\alpha}A$ expression by immunocytochemistry. Moreover, SMMHC and desmin expression was significantly increased by time dependent manner(5, 7, 15 days), in contrast to $SM{\alpha}A$ expression was slightly decreased on 15days. In conclusion, DBcAMP and RA stimulate mouse ES cells differentiation into SMC and enhanced $SM{\alpha}A$, SMMHC and desmin expression.

인삼의 dammarane계 glycosides 분획물이 일차 배양한 계배의 근육세포에 미치는 영향 (The Effect of Dammarane Glycosides of Panax ginseng on Primary Cultured Chicken Embryonic Muscle Cells)

  • 정영경;박미정;송진호;김영중
    • 약학회지
    • /
    • 제33권3호
    • /
    • pp.161-166
    • /
    • 1989
  • Effects of dammarane glycosides of Panax ginseng on primary cultured chicken embryonic skeletal muscle cells were studied by microscopic observation and determination of the activity of acetylcholinesterase. Muscle cells were prepared from the breast of 12-day-old chicken embryo and cultured with either a medium consisted of 87.5% Dulbecco's Modified Eagle Medium (DMEM), 10% horse serum and 2.5% chicken embryonic extract or a medium consisted of 90% DMEM and 10% horse serum. It was observed that dammarane glycosides of Panax ginseng seemed to show the tendency to stimulate the growth and the differentiation of the muscle cells cultured with a medium consisted of 90% DMEM and 10% horse serum under microscopic observation. The activity of acetylcholinesterase in the muscle cells cultured with a medium consisted of 90% DMEM and 10% horse serum was increased by dammarane glycosides of Panax ginseng.

  • PDF

도축한우에 있어서 근육지방증 (Steatosis in a Slaughtered Korean Native Cattle)

  • Do, Sun-Hee;Lee, Cha-Soo;Jeong, Won-Il;Chung, Jae-Yong;Jeong, Da-Hee;Noh, Dong-Hyung;An, Mi-Young;Jee, Young-Heun;Lee, Mi-Na
    • 한국임상수의학회지
    • /
    • 제19권3호
    • /
    • pp.350-352
    • /
    • 2002
  • 2002년 5월 도축중 발견된 거세수소의 근육 병변에 대한 검사 의뢰가 들어왔다. 이 병변의 육안적 소견은 광범위한 근육의 지방침윤이었고, 병리조직학적 검사에서 근섬유가 지방조직에 의해 대치된 것이 관찰되었으며, 기타 염증 소견은 관찰되지 않았다. 본 증례는 골격근의 광범위한 부분이 지방조직으로 대치된 지방증(steatosis)으로 진단되어 이에 보고하는 바이다.

Porphyromonas gingivalis lipopolysaccharide stimulates vascular smooth muscle cell migration through signal transducer and activator of transcription 3-mediated matrix metalloproteinase-9 expression

  • Kim, Yeon;Park, Joo-Yeon;Park, Hyun-Joo;Kim, Mi-Kyoung;Kim, Yong-Il;Bae, Soo-Kyung;Kim, Hyung Joon;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • 제44권1호
    • /
    • pp.20-26
    • /
    • 2019
  • Periodontal diseases have been associated with the development of cardiovascular diseases. Accumulating evidences have indicated that Porphyromonas gingivalis, a major periodontopathic pathogen, plays a critical role in the pathogenesis of atherosclerosis. In the present study, we demonstrated that P. gingivalis lipopolysaccharide (LPS) increases the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) in rat vascular smooth muscle cells. We showed that the MMP-9 expression induced by P. gingivalis LPS is mediated by the activation of signal transducer and activator of transcription 3 (STAT3) in vascular smooth muscle cells. Furthermore, the inhibition of STAT3 activity reduced P. gingivalis LPS-induced migration of vascular smooth muscle cells. Overall, our findings indicate that P. gingivalis LPS stimulates the migration of vascular smooth muscle cells via STAT3-mediated MMP-9 expression.

Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species

  • Nierobisz, Lidia S;Mozdziak, Paul E
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권3호
    • /
    • pp.456-464
    • /
    • 2008
  • Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activation of satellite cells in response to stress mediated by illness, injury or aging. This review will describe the regenerative properties of satellite cells, the processes of satellite cell activation and highlight the potential role of satellite cells in skeletal muscle growth, tissue engineering and meat production.

저출력 레이져 자극이 근육세포의 증식 및 유전자 발현에 미치는 효과 (Effect of Low-Energy Laser Irradiation on the Proliferation and Gene Expression of Myoblast Cells)

  • 곽지현;전옥희;강동연;유현희;김경환;정병조;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권1호
    • /
    • pp.81-86
    • /
    • 2010
  • Laser irradiation is known to affect various tissues such as skin, bone, nerve, and skeletal muscle. Laser irradiation promotes ATP synthesis, facilitates wound healing, and stimulates cell proliferation and angiogenesis. In skeletal muscle, laser irradiation is related to the proliferation of skeletal muscle satellite cells. Normal skeletal muscle contains remodeling capacity from myogenic cells that are derived from mononuclear satellite cells. Their processes are activated by the expression of genes related with myogenesis such as muscle-specific transcription factors (MyoD and Myf5) and VEGF (vascular endothelial growth factor). In this study, we hypothesized that laser irradiation would enhance and regulate muscle cell proliferation and regeneration through modulation of the gene expressions related with the differentiation of skeletal muscle satellite cells. $C_2C_{12}$ myoblastic cells were exposed to continuous/non-continuous laser irradiation (660nm/808nm) for 10 minutes daily for either 1 day or 5 days. After laser irradiation, cell proliferation and gene expression (MyoD, Myf5, VEGF) were quantified. Continuous 660nm laser irradiation significantly increased cell proliferation and gene expression compared to control, continuous 808nm laser irradiation, and non-continuous 660nm laser irradiation groups. These results indicate that continuous 660nm laser irradiation can be applied to the treatment and regeneration of skeletal muscle tissue.

Effect of p38 inhibitor on the proliferation of chicken muscle stem cells and differentiation into muscle and fat

  • Minkyung, Ryu;Minsu, Kim;Hyun Young, Jung;Cho Hyun, Kim;Cheorun, Jo
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.295-306
    • /
    • 2023
  • Objective: Inhibiting the p38 mitogen-activated protein kinase (MAPK) signaling pathway delays differentiation and increases proliferation of muscle stem cells in most species. Here, we aimed to investigate the effect of p38 inhibitor (p38i) treatment on the proliferation and differentiation of chicken muscle stem cells. Methods: Chicken muscle stem cells were collected from the muscle tissues of Hy-line Brown chicken embryos at embryonic day 18, then isolated by the preplating method. Cells were cultured for 4 days in growth medium supplemented with dimethyl sulfoxide or 1, 10, 20 μM of p38i, then subcultured for up to 4 passages. Differentiation was induced for 3 days with differentiation medium. Each treatment was replicated 3 times. Results: The proliferation and mRNA expression of paired box 7 gene and myogenic factor 5 gene, as well as the mRNA expression of myogenic differentiation marker gene myogenin were significantly higher in p38i-treated cultures than in control (p<0.05), but immunofluorescence staining and mRNA expression of myosin heavy chain (MHC) were not significantly different between the two groups. Oil red O staining of accumulated lipid droplets in differentiated cell cultures revealed a higher lipid density in p38i-treated cultures than in control; however, the expression of the adipogenic marker gene peroxisome proliferator activated receptor gamma was not significantly different between the two groups. Conclusion: p38 inhibition in chicken muscle stem cells improves cell proliferation, but the effects on myogenic differentiation and lipid accumulation require additional analysis. Further studies are needed on the chicken p38-MAPK pathway to understand the muscle and fat development mechanism.

Insulin-Like Growth Factor-I-Induced Androgen Receptor Activation Is Mediated by the PI3K/Akt Pathway in C2C12 Skeletal Muscle Cells

  • Lee, Won Jun
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.495-499
    • /
    • 2009
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR and IGF-I in skeletal muscle cells has not been previously examined. In this study, the role of PI3K/Akt on IGF-I-induced gene expression and activation of AR in skeletal muscle cells was investigated. C2C12 cells were treated with IGF-I in the absence or presence of inhibitors of PI3K/Akt pathway (LY294002 and Wortmannin). Inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin led to a significant decrease in IGF-I-induced AR phosphorylation and total AR protein expression. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by LY294002 or Wortmannin. Confocal images showed that IGF-I-induced AR translocation from cytosol to nucleus was inhibited significantly in response to treatment with LY294002 or Wortmannin. The present results suggest that modulating effect of IGF-I on AR gene expression and activation in C2C12 mouse skeletal muscle cells is mediated at least in part by the PI3K/Akt pathway.

培養 鷄胚 筋細胞의 分化에 따른 數種 筋特異 蛋白質의 合成에 관하여 (Synthesis of Muscle-Specific Proteins During the Differentiation of Chick Embryonic Muscle Cells in Culture)

  • 하두봉;유병재;손종경;강호성;이영섭
    • 한국동물학회지
    • /
    • 제26권1호
    • /
    • pp.1-17
    • /
    • 1983
  • 細胞의 分化에 관한 硏究의 一環으로 鷄胚의 筋細胞를 培養하면서 미오신, 악틴, 트로포미오신, 트로포닌 等 筋特異 蛋白質의 合成과 培養細胞에서 培養液內로 放出되는 蛋白質을 形態分化와 竝行하여 分析하였다. 筋特異 蛋白質중 미오신과 악틴은 細胞融合前에 활발히 合成되며 融合後에는 相對的으로 떨어지고, 트로포닌은 融合直後부터 활발히 合成되기 시작하며, 트로포미오신은 分化의 全期間에 걸쳐 合成율이 거의 一定하였다. 培養筋細胞는 細胞融合이 일어나기 前에 分子量 18,000 달톤과 20,000달톤 그리고 그 이상의 몇 가지 蛋白質을 培養液內에 放出시틴다는 것이 거의 確實하다. 이들 蛋白質은 培養筋細胞의 膜蛋白質일 것으로 推定되며 筋細胞의 同時 融合을 誘導하는 機能을 가진 것으로 생각된다.

  • PDF

전기자극 조건에 따른 근육 세포에 미치는 영향과 반응 (Effect and Response of Skeletal Muscle Cells on Electrical Stimulation Condition)

  • 서형우;신현영;이현주;태기식;김민석
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권6호
    • /
    • pp.308-312
    • /
    • 2017
  • Skeletal muscle function plays a very important role in quality of life. However, skeletal muscle causes functional decline under aging or some diseases. Exercise and muscle training are good solutions to delay sarcopenia, but there are limitations to those who are uncomfortable in exercise. For this reason, alternative interventions for muscle sarcopenia are required, and many studies proved the increase of skeletal muscle mass by electrical stimulation. In conventional studies, however, mouse skeletal muscle cells have been mostly used in experiments to identify electrical stimulation conditions while human derived cells have not been frequently utilized in these studies. Stimulation used for rehabilitation has been uniformly treated without the consideration of aging. In addition, many studies have been used with conventional petri dish usually requiring many numbers of cells, which is not appropriate for rare. Moreover, they are not usually condition uniformity of electrical field. In this study, we have developed an electrical stimulation device which consumes a small amount of cells and can form a uniform electrical field. With the system, we analyzed the skeletal muscle differentiation and Myotube thickness depending on the electrical stimulation condition.