References
- C. Cheng, B. Davis, L. Madden, N. Bursac and G. Truskey, "Physiology and metabolism of tissue-engineered skeletal muscle", Experimental Biology and Medicine, vol. 239, no. 9, pp. 1203-1214, 2014. https://doi.org/10.1177/1535370214538589
- G. Cittadella Vigodarzere and S. Mantero, "Skeletal muscle tissue engineering: strategies for volumetric constructs", Frontiers in Physiology, vol. 5, 2014.
- A. Petersen, "The anti-inflammatory effect of exercise", Journal of Applied Physiology, vol. 98, no. 4, pp. 1154-1162, 2005. https://doi.org/10.1152/japplphysiol.00164.2004
- N. Jones and K. Killian, "Exercise Limitation in Health and Disease", New England Journal of Medicine, vol. 343, no. 9, pp. 632-641, 2000. https://doi.org/10.1056/NEJM200008313430907
- Y. Liu, R. Grumbles and C. Thomas, "Electrical Stimulation of Embryonic Neurons for 1 Hour Improves Axon Regeneration and the Number of Reinnervated Muscles That Function", Journal of Neuropathology & Experimental Neurology, vol. 72, no. 7, pp. 697-707, 2013. https://doi.org/10.1097/NEN.0b013e318299d376
- A. Ito, Y. Yamamoto, M. Sato, K. Ikeda, M. Yamamoto, H. Fujita, E. Nagamori, Y. Kawabe and M. Kamihira, "Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation", Scientific Reports, vol. 4, no. 1, 2014.
- K. Ikeda, A. Ito, M. Sato, Y. Kawabe and M. Kamihira, "Improved contractile force generation of tissue-engineered skeletal muscle constructs by IGF-I and Bcl-2 gene transfer with electrical pulse stimulation", Regenerative Therapy, vol. 3, pp. 38-44, 2016. https://doi.org/10.1016/j.reth.2015.12.004
- B. Zhang, S. Yeung, Y. Liu, H. Wang, Y. Wan, S. Ling, H. Zhang, Y. Li and E. Yeung, "The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension", BMC Cell Biology, vol. 11, no. 1, p. 87, 2010. https://doi.org/10.1186/1471-2121-11-87
- A. Ito, Y. Yamamoto, M. Sato, K. Ikeda, M. Yamamoto, H. Fujita, E. Nagamori, Y. Kawabe and M. Kamihira, "Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation", Scientific Reports, vol. 4, no. 1, 2014
- H. Kern, L. Barberi, S. Lofler, S. Sbardella, S. Burggraf, H. Fruhmann, U. Carraro, S. Mosole, N. Sarabon, M. Vogelauer, W. Mayr, M. Krenn, J. Cvecka, V. Romanello, L. Pietrangelo, F. Protasi, M. Sandri, S. Zampieri and A. Musaro, "Electrical Stimulation Counteracts Muscle Decline in Seniors", Frontiers in Aging Neuroscience, vol. 6, 2014.
- M. Langelaan, K. Boonen, K. Rosaria-Chak, D. van der Schaft, M. Post and F. Baaijens, "Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells", Journal of Tissue Engineering and Regenerative Medicine, vol. 5, no. 7, pp. 529-539, 2010. https://doi.org/10.1002/term.345
- N. Nikoli , S. Skaret Bakke, E. Tranheim Kase, I. Rudberg, I. Flo Halle, A. Rustan, G. Thoresen and V. Aas, "Electrical Pulse Stimulation of Cultured Human Skeletal Muscle Cells as an In Vitro Model of Exercise", PLoS ONE, vol. 7, no. 3, p. e33203, 2012. https://doi.org/10.1371/journal.pone.0033203
- I. Evers-van Gogh, S. Alex, R. Stienstra, A. Brenkman, S. Kersten and E. Kalkhoven, "Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects", Scientific Reports, vol. 5, no. 1, 2015.
- Y. Kawahara, K. Yamaoka, M. Iwata, M. Fujimura, T. Kajiume, T. Magaki, M. Takeda, T. Ide, K. Kataoka, M. Asashima and L. Yuge, "Novel Electrical Stimulation Sets the Cultured Myoblast Contractile Function to 'On' ", Pathobiology, vol. 73, no. 6, pp. 288-294, 2006. https://doi.org/10.1159/000099123